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Abstract

Regulation is a set of constraints imposed on transactions between buyers and sellers.
We formalize the notion of market thickness in a dynamic frictional matching model
with horizontal differentiation and nontransferable utility featuring a regulator who can
determine permissible transactions. We characterize the regulator’s optimal choice of
regulatory environment, and argue that in ‘thin’, markets, regulation can correct market
failure arising from mismatch between buyers and sellers. However, in ‘thick’ markets,
deregulation is optimal, as a regulator can rely on market participants’ equilibrium
behavior instead of explicit constraints on economic activities.

1 Introduction

Generally speaking, regulation consists of constraints on the set of economic activities in
which market participants are permitted to engage. These constraints may directly affect
prices or quantities in the form of, say, taxes or quotas, or they may indirectly affect market
outcomes by serving as artificial barriers to entry through, say, licensing requirements. Reg-
ulation is intended to correct market imperfections and to align market outcomes with those
preferred by a regulatory authority. This raises a natural question: why would a regulator
intervene in a transaction between consenting parties?

A market’s efficiency is naturally related to the extent of is competition between market
participants. The well-known literature on optimal regulation views competition as driven
by the number and size of market participants (Armstrong and Sappington (2007), Baron
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(1989)).1 But to the extent that markets are horizontally differentiated, competition between
market participants should instead correspond to market thickness, which is a measure of
the availability and variety of transaction opportunities. Although the concept of market
thickness is an old one, dating back at least to Chamberlin (1937), it has been largely avoided
in the theoretical literature on markets and has been irregularly measured by empirical
researchers.

In this paper, we formalize the concept of market thickness and explore its relationship
to optimal regulation. We show that regulation is beneficial when market imperfections lead
participants to consent to transactions that they would refuse in better-functioning markets.
However, while regulation may direct transactions to benefit more market participants, the
constraints it imposes may either diminish the surplus generated in some trades or prevent
other welfare-enhancing trades that would otherwise occur. This regulatory burden is larger
in markets with fewer imperfections, as trading parties can better seek out the transactions
that they prefer on their own, revealing a complementarity between the stringency of optimal
regulation and market frictions. Intuitively, the competition across types of transactions in
thick markets can serve the same role in disciplining market participants as competition
between sellers in the standard oligopoly sense. Hence even in a market with few sellers,
deregulation may be warranted if it is sufficiently thick.

To formalize market thickness, we develop a tractable dynamic, frictional matching model
with horizontally differentiated buyers and sellers. The thickness of the market, or the
scale of its imperfections, is given by the common discount factor of buyers and sellers,
which measures the ex ante probability that a buyer will be able to identify an agreeable
seller in a fixed period of time (see, for example, McLaren (2003)). Following a match, the
seller chooses an economic activity and proposes a transaction to the buyer at that activity.
Economic activities are represented as match-specific production functions that determine
the size and sharing of the (nontransferable) match surplus. If the buyer turns down this
proposed transaction, it must wait for another match in future periods.

Our main innovation is the introduction of regulation to this model. Before the market
opens, a regulator who has preferences over the types of transactions in which market partic-
ipants engage can restrict sellers to a set of permitted economic activities. In each match, the
regulator has a targeted Pareto-efficient transaction that lies ‘in between’ the ideal match-

1Another classic literature, following Stigler (1971) and Peltzman (1976), argues that regulation is pri-
marily intended to divert surplus to special interests. While we recognize that rent-seeking is important in
the implementation of regulation, we abstract from potential institutional failures and instead focus on the
optimality of regulation.
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specific transactions of the buyers and the sellers. Regulatory constraints directly affect the
matching patterns and the activities at which transactions occur in the market equilibrium.

Our results build on well-known insights from dynamic matching markets. On the one
hand, when markets are thin, buyers are less likely to find compatible sellers and they settle
for transactions with sellers that are a poor match. In equilibrium, this lack of alternatives
available to buyers generates low continuation payoffs from market participation. Hence,
buyers can transact at unfavourable activities even with sellers that are a good match. In
thin markets, the regulator has an incentive to compress the set of permitted economic
activities, which improves the surplus from trade in lower quality matches at the expense of
the surplus available from trade in higher quality matches: excess variety is harmful and the
regulator benefits from making transactions more uniform. On the other hand, when markets
are thick, buyers can afford to be ‘picky’, and they reject unfavourable transactions in order
to wait for better opportunities. In such markets, deregulation is optimal, since the welfare
costs of over-regulating good matches are high relative to those of under-regulating poor
matches. In short, although thin markets may require intervention, thick markets effectively
regulate themselves.

Our results have both longitudinal and cross-sectional implications for the empirical study
of regulation and can help explain seemingly contrasting experiences with regulation across
industries and countries. In particular, our results provide insights into the lifecycle of regu-
latory intervention: young markets should be more regulated and deregulation should occur
once they mature. For example, regulatory intensity in the US has varied substantially over
the past thirty five years as several industries – e.g., airlines (Kahn (1987); Morrison and
Winston (1989)), banks (DeYoung (1994)), and natural gas producers (MacAvoy (2000))
– have been deregulated, reducing average prices and improving cost efficiency in the pro-
cess. Notably, these successful deregulations all occurred in mature industries with sufficient
heterogeneity in sellers that had enjoyed improvements in the abilities of buyers to find com-
patible sellers. In the case of airlines, regulations partially consisted of minimum service
requirements that effectively transferred surplus from busy routes (‘good’ matches) to sparse
routes (‘bad’ matches), while deregulation was followed by a large-scale entry of small firms
willing to serve these local markets. At the same time, many observers have argued that lax
regulations at the start of the financial crisis in 2007 contributed to the severe turmoil in
the real estate and financial industries (Brunnermeier et al. (2009)).2 Indeed, financial in-

2In addition to mere observers, the circle of critics of the financial regulatory structure has grown to
include regulators themselves. See, for example, Alan Greenspan’s testimony before Congress on October
23nd, 2008.
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novation has been blamed for contributing to the financial crisis as relatively young markets
for new financial instruments (e.g. credit default swaps) featuring a small number of highly
specialized sellers were singled out as particularly troublesome. Perhaps unsurprisingly, fi-
nancial markets have since become more intensely regulated with the Dodd-Frank Act of
2010.

Our results can also help reconcile the substantial heterogeneity in regulatory intensity
observed both across countries and across industries within countries by generating predic-
tions about which countries or industries should face heavier regulatory burdens at any point
in time. To illustrate this point further, we offer broad evidence on the regulatory experi-
ences of a variety of countries in Figure 1. For each of the 36 countries in our sample, we
plot a proxy of the level of regulatory intensity against a proxy of the thickness of markets
in their economy.3 While we stress that we do not draw any causal inferences from this plot,
there is a clear negative relationship between regulatory intensity and market thickness that
is statistically significant at the 95% confidence level. This is suggestive of the fact that
thicker product markets are less heavily regulated. Moreover, this relationship is not merely
an artifact of thicker markets tending to be larger than thinner markets. Indeed, when we
reproduce the same plot conditional upon market size, as measured by either GDP or GDP
per capita, we find an even more steeply negative and statistically significant relationship
between regulatory intensity and market thickness.

This paper borrows from two major literatures in industrial organization and economic
theory. It primarily builds upon the well established literature on optimal regulation (Dem-
setz (1968), Posner (1974)), which has largely focused on the regulation of monopoly (Train
(1991)), market entry (Djankov et al. (2002)) and market conduct (Viscusi et al. (2005)).
Our work shares some conceptual similarities with (Schwartzstein and Shleifer (2013)), who
also model the regulation of economic activities in general. We extend this considerable lit-
erature by focusing on regulation in the context of horizontally differentiated markets. This
forms a natural connection with a secondary literature on dynamic matching that has largely
focused on vertical differentiation, deriving conditions for positive assortative matching (Bur-
dett and Coles (1997), Sattinger (1995), Shimer and Smith (2000)).4 Another departure from

3These results are robust to alternative measures of regulatory intensity (inidices of administrative regu-
lation and of domestic economic regulation). As an external validity check of our proxy for market thickness,
we computed the OECD-wide and worldwide industry-level number of establishments per capita using data
from Nicita and Olarreaga (2007) and found them to be highly correlated to OECD-wide and worldwide
industry-level measures of market thickness as estimated in Knetter and Slaughter (2001) using data on
internation trade flows (ρ = 0.82 and 0.79 respectively.)

4We are aware of very few models of frictional matching that focus explicitly on horizontal differentiation.
See Clark (2007) and Hofmann and Qari (2011). Lauermann and Nöldeke (2014) study a general matching
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Figure 1: Regulation and Market Thickness Across Countries
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assortative matching frameworks is that in our model, the value of a transaction within a
match is not determined solely by the types of buyers and sellers, but rather it depends
on post-match interactions (in our case on the economic activity that the seller offers the
buyer.) Our focus on how market outcomes vary with the level of market imperfections,
relates to work on the convergence of decentralized dynamic bargaining equilibria to Wal-
rasian outcomes (De Fraja and Sakovics (2001), Diamond (1971), Gale (1986), Lauermann
(2013), Rubinstein and Wolinsky (1985, 1990), Satterthwaite and Shneyerov (2007)).5 A
main innovation in our framework is that sellers’ choice sets are endogenously determined
by an active regulator.

The remainder of the paper is organized as follows. In Section 2, we present our model
of exchange and regulation. In Section 3, we describe the strategies of buyers, sellers and
the regulator, define our equilibrium concept, and prove the existence of an equilibrium. In
Section 4, we first characterize market equilibria given a fixed regulatory environment and
level of market thickness and describe the effect of regulation on market outcomes. Second, we
derive our main results on the comparative statics of optimal regulation in market thickness.
In Section 5, we illustrate our results in a simple application of our model that is tailored to
study over-specialization in the provision of medical services.

2 Model

2.1 The Environment

A continuum of long-lived buyers and sellers participate in an infinite-horizon frictional
matching market. There is a unit mass of both buyers and sellers, with buyer types θB
distributed on [θB, θB] with density fB and seller types θS distributed on [θS, θS] with density
fS, where θB < θB and θS < θS. A match is a buyer-seller pair (θB, θS) ∈ [θB, θB]× [θS, θS].
The outcome of a match depends on the types of the buyer and the seller and also on
the particular transaction they engage in. In any match, the seller chooses an economic
activity, parametrized by a ∈ A = [a, a], where a < a. A transaction at activity a in match
(θB, θS) generates payoffs according to πθB : [θS, θS]×A→ [0, π] for the buyer, according to
πθS : [θB, θB]×A→ [0, π] for the seller and according to πR : [θB, θB]× [θS, θS]×A→ [0, π]

for the regulator, where πθB , πθS and πR are continuous. We introduce more structure on

setup with nontransferable utility.
5In directed search models, Delacroix and Shi (2013) introduce a private quality investment by sellers,

Doyle and Wong (2013) allow sellers to renege on their price postings following buyer visits, while Menzio
(2005) has post-match outcomes be determined by an alternating offer bargaining game.
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the preferences of the buyers, the sellers and the regulator in Section 2.4.
There are many interpretations of economics activities, which index match-specific pro-

duction functions. For example, activities can be thought of as match-specific investments
made by sellers. This can include decisions about product quality in consumer markets or
the provision of effort/competence in service markets. Alternatively, activities can represent
the establishment of terms of trade within a match, insofar as this is consistent with non-
transferable utility. This can include the outcomes of bargaining following joint projects or
the setting of purchasing prices or quantities.

2.2 The Regulatory Stage

Prior to the market’s opening (t = 0), the regulator may restrict sellers’ choices to a set
of permitted activities. This is how we view regulation: some body outside the market
can, ex ante, rule out certain transactions from occurring by prohibiting their corresponding
production functions. A regulatory environment is described by a continuous function P :

[θB, θB]× [θS, θS]→ A, where the interval [a, P (θB, θS)] consists of the activities permitted
by the regulator in match (θB, θS). In words, the activity P (θB, θS) is the ‘highest’ activity
allowed by the regulator in match (θB, θS). Let P denote the set of regulatory environments,
which we assume is compact.6

We can allow for various degrees of regulatory power, which can be due to enforcement
or political constraints imposed on the regulator. With no further restrictions, P describes
the set of match-specific regulatory environments, in which the regulator can tailor rules
to each market meeting. If we also require that, for all P ∈ P and all θB, P (θB, θS) is
constant in θS, then P describes the set of buyer-specific regulatory environments, in which
the regulator specifies the transactions any seller can engage in with a given buyer. Finally,
if we require that, for all P ∈ P , P (θB, θS) is constant in both θB and θS, then P describes
the set of blanket regulatory environments, in which the whole economy is subject to the
same regulatory constraints. Unless explicitly noted, our results apply to all three forms of
regulation.

2.3 The Matching Market

The market opens following a choice of regulatory environment, and in each period t =

1, 2, . . . , buyers and sellers are randomly allocated into matches. In each match, once the
6A sufficient condition is that the family of functions in P is equicontinuous.
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seller has chosen an activity, a transaction occurs if agreed to by both parties. Forgoing a
transaction yields a period payoff of 0 to both buyer and seller. Buyers and sellers share a
common discount factor δ < 1, which parametrizes market thickness. When δ is small, it is
costly for buyers to locate sellers, as in a thin market. When δ is large, buyers bear little
cost to finding suitable transactions, as in a thick markets.

We assume that buyers have inelastic unitary demands for transactions and exit the
market once their demand is met. Two further assumptions about the matching market
considerably improve the tractability of our model. First, we assume that sellers have fully
elastic supplies and can remain in the market following a transaction. Since πθS ≥ 0, this
assumption ensures that sellers accept transactions with any buyer at any activity and can
be treated as static optimizers. Second, we assume that an exiting buyer is replaced in
the market by a buyer of the same type, which ensures that the distribution of unmatched
buyers is exogenous and stationary.7 Both assumptions are technically convenient and do
not affect the central trade-off introduced by our model, which focuses on how equilibrium
activities adjust to the thickness of the market. An important note is that even if sellers are
willing to trade with any buyer, the activities at which transactions occur in equilibrium are
determined by the buyers’ trade-off between current and future trading opportunities, and
it is the endogenous outflow of buyers that this trade-off generates that the regulator tries
to control. Both assumptions ensure the uniqueness of equilibria in the matching market
for any given regulatory environment, which is of critical importance in our model to avoid
difficulties with equilibrium selection in the regulator’s problem. We summarize the timing
of the model in Figure 2.

2.4 Payoffs

Optimal regulatory intervention involves a trade-off between ‘one-size-fits-all’ constraints on
economic activities and horizontal differentiation in the tastes and skills of market partici-
pants. In this section, we impose more structure on the preferences of buyers, sellers and
the regulator to obtain predictions on equilibrium matching patterns and optimal regulatory
environments.

Assumption 1. πθB is strictly quasiconcave in a and quasiconcave in θS. πθS is strictly
quasiconcave in a and quasiconcave in θB. Furthermore, there exists a mapping σ : [θB, θB]→

7This ‘cloning’ assumption also appears in Adachi (2003) and Eeckhout (1999).
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Figure 2: Timing in the Matching Market.
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[θS, θS] such that, for any (θS, θB, a),

σ(θB) ∈ arg max
θ′S∈[θS ,θS ]

πθB(θ′S, a), and

θB ∈ arg max
θ′B∈[θB ,θB ]

πσ(θB)(θ
′
B, a),

where σ (θB) is the preferred seller for a buyer of type θB.

Assumption 1 states that buyers and sellers have single-peaked preferences over both their
trading partners and activities and that all agents’ ideal matches are mutually agreeable: a
buyer’s preferred seller is also that seller’s preferred buyer. The assumption captures the
feature that in market environments, to each want of a particular buyer corresponds a (not
necessarily unique) seller whose skills are best put to use in satisfying precisely that want.
Regulation may play a role when market imperfections do not allow these mutually beneficial
transactions to arise often enough.

Define the function α̂ : [θB, θB]× [θS, θS]× P → A such that

α̂θS(θB, P ) = arg max
a≤P (θB ,θS)

πθS(θB, a),

where α̂θS(θB, P ) is the ideal activity for seller θS when matched with buyer θB under regu-
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latory environment P . Our assumptions ensure that α̂ is continuous. With slight abuse of
notation, let α̂θB(θS, P ) denote the corresponding ideal activity for a buyer in match (θB, θS)

given regulation P . Finally, let α̂θS(θB) and α̂θB(θS) be the ideal activities of seller θS and
buyer θB in the absence of regulation (i.e., when P (θB, θS) = a for all θB and θS).

As utility is nontransferable, the choice of an activity determines both the level of surplus
in a match and the shares of this surplus accruing to buyers and sellers. Our next assumption
relates the quality of a match to buyers’ and sellers’ preferences over activities.

Assumption 2. For all matches (θB, θS),

1. α̂θS(θB) is decreasing in |θB − σ−1(θS)|.

2. α̂θB(θS) is decreasing in |θS − σ(θB)|.

3. α̂θS(θB) ≥ α̂θB(θS).

Assumption 2 ensures that higher activities generate greater buyer and seller surplus
than lower activities in good matches (parts 1 and 2), so that these matches exhibit partially
concordant interests. Note that in principle, the preferred activities of buyers and sellers need
not be Pareto-efficient. However, by the strict quasiconcavity of πθS in a, a payoff-maximizing
seller will choose a Pareto-efficient activity in all matches in equilibrium. Furthermore a key
feature of our model is that buyers and sellers do not have concordant interests over Pareto-
efficient activities. To this end, we impose the convenient normalization that sellers always
weakly prefer higher activities than buyers (part 3).

We consider markets in which sellers, when unconstrained by regulation, choose activities
on the Pareto-efficient frontier for a given match that conflict with the regulator’s targeted
Pareto-efficient activity for that match. These are the relevant markets for our purposes as
there is scope for regulation. More precisely, fix a continuous function π : [θS, θS]×[θB, θB]→
[0, π], and assume that for all matches (θB, θS), πθS(θB) ∈ [πθS(θB, α̂θB(θS)), πθS(θB, α̂θS(θB))]

and that πθS(θB) is decreasing in |σ(θB)−θS|. Define the function α̂R : [θB, θB]×[θS, θS]→ A

such that

α̂R(θB, θS) = arg max
a∈A

πθB(θS, a)

subject to πθS(θB, a) ≥ πθS(θB),

which describes the regulator’s ideal activity in a match (θB, θS), where πθS(θB) is the share of
the surplus in this match that the regulator prefers to allocate to the seller. Our assumptions
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ensure that α̂R is continuous and that for all matches, α̂R(θS, θB) ∈ [α̂θB(θS), α̂θS(θB)]. Hence,
the regulator prefers that transactions occur at some compromise activity lying between the
ideal activities of buyers and sellers.

Assumption 3. For all matches (θS, θB),

1. πR is strictly quasiconcave in a, with α̂R(θB, θS) = arg maxa∈A πR(θB, θS, a).

2. α̂R(θB, θS) is decreasing in |σ(θB)− θS|.

3. πθB(θS, α̂R(θB, θS)) and πθS(θB, α̂R(θB, θS)) are decreasing in |σ(θB)− θS|.

The regulator’s preferences over activities in any match are single-peaked around its ideal
activity for that match (part 1). For worse matches, its ideal activities are lower (part 2),
while the regulator’s losses from more severe mismatch are (at least weakly) shared between
buyers and sellers (part 3). This is, indirectly, an assumption on the function π, which states
that πθS(θB) does not decline so fast in |σ(θB)− θS| that the buyer is made better off under
the regulator’s ideal activities in worse matches.

Finally, we impose technical requirements that are important for establishing the existence
of an equilibrium and the uniqueness of equilibrium payoffs.

Assumption 4. For all matches (θB, θS) and any regulatory environment P ,

1. πθS(θB, α̂θB(θS)) = 0.

2. α̂θB(θS) ≤ P (θB, θS).

We assume that sellers weakly prefer not trading to offering buyers their preferred activity
within a match (part 1). Note that this is consistent with horizontally differentiated markets.
To illustrate this, suppose that an activity a ∈ A describes a particular good to be supplied
by the seller along with some terms of trade. Given any activity, both buyers and sellers
are better off transacting with their mutually agreeable types, e.g., a buyer has a higher
willingness to pay for the good of its preferred seller type. However, given a particular seller,
a buyer may prefer the offered good with a large price cut, while the seller may prefer a
higher price.8 In addition, in any match, the buyers’ ideal activity can be offered in any
regulatory environment (part 2).

8If we had allowed πθS < 0, then a slight generalization of part 1 of Assumption 4 would allow for
πθS (θB , α̂θB (θS)) ≤ 0. This would complicate notation but present no difficulties. Since sellers always refuse
trades yielding negative payoffs, an interpretation of our present setup is that α̂θB (θS) represents the ideal
feasible trade for the buyer in match (θB , θS).
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3 Strategies and Equilibrium

At time t = 0, a strategy for the regulator is a regulatory environment P ∈ P . At time t = 1,
the market opens under regulatory environment P , and we focus on stationary strategies for
buyers and sellers. At any time t ≥ 1, a strategy for seller type θS is the choice of a permitted
activity in each of its possible matches, represented by αθS : [θB, θB] × P → A, with the
restriction that for all buyer types θB and regulatory activity P , αθS(θB, P ) ≤ P (θB, θS).
Similarly, at any time t ≥ 1, a strategy for buyer type θB is the choice of accepting or
refusing to transact with possible seller-activity pairs, represented by acceptance indicator
IθB : [θS, θS]× P × A→ {0, 1}.

Given a strategy profile (P, α, I), the expected payoff at any time t to a seller of type θS
is

UθS(P, α, I) =
1

1− δ

ˆ
IθB(θS, αθS(θB, P ))πθS(θB, αθS(θB, P ))fB(θB)dθB, (1)

that to a buyer of type θS is

VθB(P, α, I) =

´
IθB(θS, αθS(θB, P ))πθB(θS, αθS(θB, P ))fS(θS)dθS

1− δ
´
IθB(θS, αθS(θB, P ))fS(θS)dθS

, (2)

while the regulator’s payoff is

W (P, α, I) =
1

1− δ

ˆ ˆ
IθB(θS, αθS(θB, P ))πR(θB, θS, αθS(θB, P ))fB(θB)fS(θS)dθBdθS. (3)

Definition 1. A strategy profile (P ?, α?, I?) is an equilibrium if and only if

1. For all (θB, θS, a) and all P , buyers’ acceptance strategies satisfy

I?θB(θS, a, P ) = 1 if and only if πθB(θS, a) ≥ δVθB(P, α?, I?). (4)

2. For all (θB, θS) and all P , sellers’ activity choices satisfy

α?θS(θB, P )


∈ arg max{a≤P (θB ,θS):I?θB (θS ,a,P )=1} πθS(θB, a),

if {a ≤ P (θB, θS) : I?θB(θS, a, P ) = 1} 6= ∅,

= α̂θB(θS, P ), otherwise.
(5)

12



3. The regulator’s choice of regulatory environment satisfies

P ? ∈ arg max
P∈P

W (P, α?, I?).

In an equilibrium, buyers accept all transactions that yield them at least their expected
discounted payoff from continued search, sellers choose economic activities that maximize
their stage payoffs and transactions occur under an optimal regulatory regime. Note that we
impose a selection criterion: when buyers are indifferent, they accept trades, and when sellers
are indifferent, they propose acceptable trades. Furthermore, the requirement that the seller
proposes the buyer’s ideal activity in matches in which the buyer refuses all transactions
eliminates a trivial source of equilibrium multiplicity.

We establish the existence of an equilibrium in two steps. First, we show that under any
regulatory environment P and any market thickness δ, there exists a unique market equilib-
rium of the dynamic matching game between buyers and sellers. Second, given anticipated
market equilibria, we guarantee the existence of an optimal choice of regulatory environment.

Proposition 1. Given any regulatory environment P and market thickness δ, a unique
market equilibrium (α?(P, ·), I?) exists. Furthermore, equilibrium payoffs are continuous in
(P, δ).9

Given a regulatory environment P , the existence of a market equilibrium follows from
a fixed point argument on a space of bounded and continuous functions containing buyers’
payoffs. First, given any payoff function V : [θB, θB] → [0, π

1−δ ] for the buyers, we derive
the associated buyers’ acceptance strategies for each match (θB, θS) and any activity a ≤
P (θB, θS), in a way that is consistent with (4). This step is standard. Second, we derive
a candidate for the associated seller’s optimal activity strategy in a way that is consistent
with (5). This step is potentially more challenging, as it could introduce (a) a source of
equilibrium multiplicity, since sellers may have many optimal activity choices, as well as (b)

a source of discontinuity in buyers’ payoffs, mirroring discontinuities in the sellers’ optimal
activity proposals. However, the assumption that sellers are long-lived, quasiconcavity of πθB
and πθS , our selection assumptions embedded in (4) and (5) and Assumption 4 allow us to
sidestep these issues. Third, given sellers’ optimal activity choices, we solve buyers’ optimal
search problem. This step is standard, and it yields an updated value function Ṽ : [θB, θB]→
[0, π

1−δ ]. The mapping V 7→ Ṽ generated above satisfies the conditions of the contraction
mapping theorem, and its unique fixed point defines the unique market equilibrium payoffs

9The proofs of all results are in the Appendix.
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associated with regulatory environment P and thickness δ.10 That market equilibrium payoffs
are unique is critical for the tractability of our model, as it avoids equilibrium selection
problems that would complicate the regulator’s choice of regulatory environment.

By Proposition 1, we can define continuous maps V ?
θB

(P, δ) and U?
θS

(P, δ) that denote,
respectively, the unique market equilibrium payoffs to the buyers and sellers under regulatory
regime P and market thickness δ. We highlight the dependence of equilibrium payoffs on
market thickness since it will play a predominant role in our main results. Similarly, we denote
equilibrium policies by α?θS(θB, P, δ) and equilibrium acceptance decisions as I?θB(θS, P, δ).
Finally, if (α?, I?) is the market equilibrium corresponding to regulatory environment P ,
then W̄ (P, δ) ≡ W (P, α?, I?) is the regulator’s payoff from this equilibrium. The solution to
the regulator’s problem

W ?(δ) = max
P∈P

W̄ (P, δ)

yields the optimal regulatory environment under market thickness δ.

Proposition 2. Given market thickness δ, an equilibrium (P ?, α?, I?) exists.

Since P is compact by assumption, Proposition 2 follows if W̄ is a continuous function
of P , which follows from arguments developed in the proof of Proposition 1.11

4 Optimal (De)Regulation

In this section, we present our main results on the comparative statics of optimal regula-
tion. As a first step, we characterize the properties of market equilibria for fixed regulatory
environments. Given a regulatory environment P , market thickness δ, corresponding mar-
ket equilibrium (α?, I?) and buyer type θB, we denote the set of seller types with whom
this buyer transacts by MθB(P, δ) ⊆ [θS, θS]. More precisely, θS ∈ MθB(P, δ) if and only if
I?θB(θS, α

?
θS

(θB, P, δ), δ) = 1.

Proposition 3. Given a regulatory environment P , market thickness δ, corresponding mar-
ket equilibrium (α?, I?) and buyer type θB,

1. MθB(P, δ) is convex, contains seller type σ(θB) and is given by

MθB(P, δ) = {θS ∈ [θS, θS]; πθB(θS, α̂θB(θS)) ≥ δV ?
θB

(P, δ)}.
10Our model has a continuous set of buyer types, which rules out appealing to a general existence result

(with finite type spaces) for dynamic frictional matching markets due to Manea (2011).
11Note that equilibria need not be unique, since the regulator may have multiple optimal choices.
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2. Fix any θS ∈MθB(P, δ).

(a) If πθB(θS, α̂θS(θB, P )) ≥ δV ?
θB

(P, δ), then α?θS(θB, P, δ) = α̂θS(θB, P ).

(b) If, on the other hand, πθB(θS, α̂θS(θB, P )) < δV ?
θB

(P, δ), then α?θS(θB, P, δ) is given
by the unique value of a ∈ [α̂θB , α̂θS) for which πθB(θS, a) = δV ?

θB
(P, δ).

3. If δ′ ≤ δ, then V ?
θB

(P, δ′) ≤ V ?
θB

(P, δ).

4. If P ′ ≤ P , then V ?
θB

(P ′, δ) ≥ V ?
θB

(P, δ).

We illustrate market equilibria in Figure 3, in which we fix a buyer of type θB and depict
seller types θS on the horizontal axis and activities a on the vertical axis. The interval of
activities P represents the regulatory environment. We also depict the ideal activities α̂θB(·)
of buyer θB, the ideal activities α̂·(θB) of sellers when matched with this buyer, and the
ideal activities α̂R(θB, ·) of the regulator in matches involving buyer θB. These are all single-
peaked around the buyer’s ideal seller of type σ(θB). The dotted ring in the centre of the
figure depicts the indifference curve of the buyer at level δV ?

θB
. Indifference curves at higher

levels of utility lie inside this ring, with the highest indifference curve being the single point
(σ(θB), α̂θB(σ(θB))). The equilibrium activity-seller pairs involving buyer θB are highlighted
in bold.

In equilibrium, a buyer accepts transactions from sellers whose types are sufficiently close
to its ideal seller’s type (part 1). Furthermore, a buyer transacts only with those sellers who,
were they to provide it with its ideal match-specific activity, would offer a payoff at least
as high as its discounted continuation payoff. In Figure 3, the set MθB(P, δ) corresponds
to those seller types θS such that the points (θS, α̂θB(θS)) lie inside the area defined by the
indifference curve of buyer θB at δV ?

θB
(those sellers in [θ?S, θ

?

S]). However, only sellers whose
types are located on the boundaries of the matching set of buyer θB will actually offer its
ideal match-specific activity (in Figure 3, the two sellers θ?S and θ?S). If close enough to the
buyer’s ideal type, a seller can offer to transact at its ideal activity among those permitted
under regulatory environment P and still deliver to the buyer a payoff preferred to continued
search (part 2. In Figure 3, these are the sellers in [θUS , θ

U

S ]). Such a seller need not be
particularly well-off in such a match, since regulation may substantially hinder its choice of
activity (in Figure 3, sellers in [θRS , θ

R

S ] are constrained by the regulatory environment). A
type of seller sufficiently far from the buyer’s ideal seller type (in Figure 3, those sellers in
[θS, θ

U
S ]∪ [θ

U

S , θS]) provides an activity between the ideal match-specific activities of the buyer
and the seller, keeping the buyer indifferent between that transaction and continued search.
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Figure 3: Market Equilibria under Regulation
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Buyers are (weakly) better off in thick markets (part 3). In particular, by part 1, this
implies that for δ′ < δ, we have that MθB(P, δ) ⊆ MθB(P, δ′). Since the marginal transac-
tions that a buyer is involved with in equilibrium take place at its preferred activity with
the marginal seller (in Figure 3, the transactions with sellers θ?S and θ?S), the marginal trans-
actions of buyers in thick markets arise with sellers closer to their ideal type. This result
highlights the central intuition for why deregulation may be optimal in thick markets: buyers
are less prey to mismatch in thick markets since the availability of future trading opportu-
nities increases their willingness to turn down unfavourable matches and search for better
transactions. If the distribution of activities offered by sellers was exogenous, this result
would be standard and follow from the fact that any buyer’s acceptance strategy in a thin
market could be mimicked by the same buyer in a thick market, yielding higher payoffs
through a lower cost of delay. In our setting, the equilibrium distribution of activities offered
by sellers varies with market thickness as sellers adjust their offers of activities when buyers
adjust their search strategies. To counter this issue and prove part 3 of Proposition 3, we
exploit the fact that market equilibrium payoffs correspond to fixed points of a contraction
mapping.
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Finally, buyers are worse off in less regulated markets (part 4). This result is closely
related to that of part 3, but there are some key differences in intuition. Sellers close enough
to a buyer’s ideal seller are typically constrained by the regulatory environment: they would
choose activities they prefer if these were permitted, and the buyer would accept them be-
cause its current transactions with these sellers yield payoffs strictly above that to continued
search. Hence, with deregulation, the buyer gains less from transactions with sellers close
to its ideal type. While sellers far from the buyer’s ideal type are typically unconstrained
by regulation, they also gain from deregulation because the drop in the buyer’s continuation
payoffs allows them to transact at activities they prefer. Hence, deregulation tilts activities
towards those favored by sellers at the expense of buyers’ payoffs. Note that an implication
of this result is that MθB(P, δ) ⊇ MθB(P ′, δ), that is, lower regulatory constraints allow for
more transactions.

We now present our main results, which address the relationship between optimal regu-
lation and market thickness. Given a regulatory environment P , market thickness δ, corre-
sponding market equilibrium (α?, I?) and buyer type θB, let RθB(P, δ) be the set of equilib-
rium transactions under (P, δ) involving buyer θB that are under-regulated, which is given
by

RθB(P, δ) = {θS ∈ [θS, θS];α?θS(θB, P, δ) ≥ α̂R(θB, θS)}.

That is, a transaction at activity a in match (θB, θS) is under-regulated if the regulator has
an incentive to intervene in that match to lower the equilibrium activity.

Proposition 4. Fix regulatory environment P ′ and market thicknesses δ′ < δ.

1. Given any buyer type θB, RθB(P ′, δ) ⊆ RθB(P ′, δ′).

2. Let P ′ be an optimal regulatory environment under δ′ and suppose that, for all θB,
α?σ(θB)(θB, P

′, δ′) < α̂R(θB, σ(θB)).

(a) Under match or buyer-specific regulation, if δ is sufficiently close to δ′, then
W ?(δ) > W ?(δ′) and there exists P > P ′ such that W̄ (P, δ) > W̄ (P ′, δ′).

(b) There exists δ > δ′ such that if δ ≥ δ and P is an optimal regulatory environment
under δ, then P > P ′.

For a fixed regulatory environment, the set of transactions that could gain from addi-
tional regulation shrinks as markets thicken (part 1). Regulation is primarily beneficial by
constraining the activities at which poor matches transact. In thicker markets, buyers find
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delaying transactions less costly and sellers offer lower activities to meet buyers’ improved
outside options. Market thickness, with its corresponding increasing ability of buyers to wait
for advantageous transactions, is a substitute for regulatory activity.

When regulatory environments are binding, the regulator is better off in thicker markets,
and furthermore, while not necessarily optimal, additional regulation is always beneficial
(part 2a). The inequality α?σ(θB)(θB, P

′, δ′) < α̂R(θB, σ(θB)) describes a binding regulatory
environment as one for which even transactions at ideal matches are over-regulated (the
market equilibrium illustrated in Figure 3 satisfies this condition).12 Consider a type θB
buyer, market thickness δ′ and binding regulatory environment P ′. If market thickness is
higher, then for a fixed regulatory environment P ′, the buyer is better off and only accepts
transactions from sellers closer to its ideal seller. On the other hand, when the regulatory
environment is binding, deregulation always strictly decreases the buyer’s payoffs, as sellers
close to the buyer’s ideal type take advantage of newly permitted activities and the buyer
accepts transactions from sellers further from its ideal seller. Hence, for market thickness
δ greater than but sufficiently close to δ′, the regulator can find a deregulated environment
P > P ′ such thatMθB(P, δ) = MθB(P ′, δ′), that is, under which the buyer accepts to transact
with the same sellers under (P, δ) and (P ′, δ′). Under (P, δ), it is those sellers sufficiently close
to the buyers ideal seller type that can take advantage of the newly deregulated activities.
For all these sellers, P ′ is a binding regulatory environment by assumption, and hence the
regulator’s payoff is higher under (P, δ).13 Marginal deregulation following small changes in
thickness, through its effects on matching market equilibrium outcomes, acts as a targeted
loosening of regulatory constraints only for those matches for which the regulator’s payoff
would be improved if more activities were allowed.

The previous result highlights the two effects of deregulation. On the one hand, deregu-
lation has a trade-enhancing effect, as buyers accept some to transact in some matches that
they refused in a more regulated environment. On the other hand, deregulation increases
sellers’ bargaining power, increasing equilibrium activities with all the buyers with which
they transact. In general, it is difficult to determine the combined impact of these two
effects of deregulation on the regulator’s payoff, which is why part 2a proceeds by compen-
sating the trade-reducing effect of an increase in market thickness through an appropriate

12This condition could be disposed of if we assumed that the regulator’s and the sellers’ preferences over
activities coincide at ideal matches. For an example, see Section 5.

13This illustrates why the statement is restricted to match or buyer-specific regulation. As the argument
proceeds by adjusting regulatory environments for each type of buyer separately, the set of regulatory envi-
ronments must allow the same flexibility. Otherwise, the regulatory change from P ′ to P could have different
effects on different buyer types.
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trade-enhancing deregulation. In part 2b, we obtain the limiting result that any binding
regulatory environment is suboptimal if markets are sufficiently thick.14 In thicker markets
buyers transact mostly with sellers close to their ideal seller. If a market is sufficiently thick,
then buyers will transact only with constrained sellers whose activities are constrained by
regulation. Assumption 3 ensures that if the regulatory environment is binding, these trans-
actions will occur at activities systematically lower than those preferred by the regulator. In
such markets, deregulation is a necessary feature of any optimal regulatory environment.15

5 Application: A Model of Over-Prescription

In this section, we present a simple and numerically tractable application that illustrates
our general results. Consider a market with heterogeneous buyers and sellers whose types
(θB and θS respectively) are distributed uniformly on the unit ring. We interpret buyers as
patients with distinct medical needs and sellers as doctors with distinct medical training.
Economic activities are chosen from the set A = [0, 1]. We interpret these as specialized
medical procedures unique to each seller type.

Given a match (θB, θS) and an activity a, payoffs to patients and doctors are given by

πθB (θS, a) = uB − ad (θB, θS) ,

and
πθS (θB, a) = auS,

where d (·, ·) is distance on the unit ring and 1 > uB > uS > 0. Patients are best off when
they are appropriately matched with a doctor, e.g., a patient sufferring from chest pains is
best off when matched with a cardiologist. Doctors are made better off when they order the
most specialized procedures available (large values of a), but patients bear this cost, which
is increasing in its medical irrelevance.

For simplicity, we assume that the Pareto-efficient activity preferred by the regulator in
a match (θB, θS) is the activity maximizing the sum of patients’ and doctors’ payoffs, and

14While our previous results support the intuition that deregulation is always optimal in thicker markets,
we cannot establish a global comparative static result for the general case. In Section 5 we present a simple
numerical example in which optimal regulation is decreasing in market thickness.

15Note that this result is valid for any optimal regulatory environments at thicknesses δ and δ′.
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that the regulator’s payoff in a match is also given by the sum of agents’ payoffs. That is,

πR(θB, θS, a) = πθB(θS, a) + πθS(θB, a).

In this market, the regulator can be thought of as one of the many external oversight bodies
that influence the degree of medical specialization in the health care industry. For exam-
ple, the National Residential Match Program is a non-profit organization that ostensibly
represents both patients and doctors and influences the extent to which specialized doctors
are available in geographic health care markets. They do so by first setting target levels of
residents and fellows in thousands of hospitals that vary by specialty and then by allocating
prospective doctors accordingly. As another example, the Center for Medicare and Medicaid
Services determines the types of procedures for which they offer insurance coverage, which
serves as an implicit seller specific regulatory policy.

For numerical tractability, we consider blanket regulatory environments P that take the
form of an interval [0, aR], where aR ≤ 1. Due to the symmetry of the example, the buyer-
specific regulation is identical to blanket regulation. It can be verified that this example
satisfies the assumptions of our model. In any equilibrium under any regulatory environment
P and thickness δ, we have that V ?

θB
(P, δ) = V ?

θ′B
(P, δ) ≡ V ?(P, δ) for any patient types θB

and θ′B. Doctors’ optimal activity choices are given by:

α?θS(θB, P ) =

aR if d(θB, θS) ≤ uB−δV ?
aR

,

max
{
uB−δV ?(P,δ)
d(θB ,θS)

, 0
}

otherwise.

A doctor of type θS orders the most specialized procedure that is allowed under P whenever
possible (i.e., when matched sufficiently well), while it chooses the procedure that leaves
patients indifferent between agreeing to the procedure (and receiving a payoff of uB − ad)
and waiting for a preferable doctor (and receiving a payoff of δV ?(P, δ)) otherwise (if such
an activity exists, i.e., if the match is not too poor). Given doctors’ strategies, we can derive
an implicit function for V ?(P, δ) as

V ?(P, δ) = 2 ·

uB−δV
?(P,δ)

aRˆ

0

uB − aRxdx+ 2 ·

1/2ˆ
uB−δV ?(P,δ)

aR

δV (P, δ)dx,
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Figure 4: Buyers’ Value Functions V ?(P, δ)
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which gives us the following solution for V ∗(P, δ)

V ?(P, δ) =
uB
δ

+
1

2δ2
(
aR (1− δ) + (a2R(1− δ)2 + 4uBaR(1− δ)δ)1/2

)
The behavior of V ?(P, δ) under regulation, illustrated in Figure 4, conforms to the results
of Section 4. More restrictive regulations, i.e., lower aR, improve patients’ payoffs, and as
markets thicken, their payoffs continue to improve as they choose better doctor matches
(Proposition 3).

Under buyer-specific regulation, the regulator’s optimal choice of regulation, a?R(δ), sat-
isfies

a?R(δ) = arg max
aR∈[0,1]

V ?(P, δ) + 2uS(uB − δV ?(P, δ))

(
1 + log

aR
2(uB − δV ?(P, δ))

)

Although an analytical solution for a?R(δ) exists, it is algebraically complex. Instead, we nu-
merically derive the optimal regulation as a function of market thickness, which we present
in Figure 5. In thin markets, the regulator will restrict doctors from overspecializing by set-
ting the maximum allowable economic activity aR ≈ 0.07. As markets thicken, the regulator
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Figure 5: Optimal Regulation a?R(δ)
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will slightly increase aR until δ ≈ 0.95 at which point the regulator will fully deregulate the
market (Proposition 4).

6 Conclusion

This paper formalizes the concept of market thickness as a measure of the level of compet-
itiveness across differentiated sellers. When buyers have specific tastes but access to few
sellers (or costly access to many sellers), restrictions on the the types of economic activities
that are permitted may facilitate trade and improve welfare, as viewed by an outside reg-
ulator. If, however, buyers gain inexpensive access to a variety of sellers, then regulatory
constraints may reduce the surplus from trade. In competitive, thick markets, regulatory
intervention is both unwarranted, since market participants reject poor transactions, and
even harmful, since it impedes beneficial transactions.

Our framework represents a novel approach to the study of regulatory (or deregulatory)
policy. Accordingly, our primary goal is to develop a tractable yet sufficiently general model
that focuses on the relationship between market thickness and optimal regulation. Our
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results suggest many avenues for future work. Of these, we consider incorporating dynamics
into regulators’ policy choices as the most fruitful. In the model presented here, although the
market for transactions is dynamic, the regulatory environment is fully determined before
the market opens. If instead the regulatory environment could respond to evolution of the
market, then several additional questions regarding market equilibria and optimal regulatory
policy may arise. First, it is natural to ask how the regulatory environment itself affects
market thickness. For example, if a market’s thickness evolves according to the frequency
and quality of transactions, then it would also depend on the dynamics of the regulatory
environment. If regulation constrains market growth, then this would introduce an additional
trade-off to the regulator between sustaining current markets and developing future ones.
Such a trade-off could serve as the basis for a richer, dynamic theory of market development
and deregulation. Second, our approach is silent on the politics surrounding regulatory
intervention. Although our results suggest that deregulatory waves are called for when a
market is sufficiently thick, it would be interesting to explore how the balance of political
power between the winners and losers of regulation either hastens or delays such waves.
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A Appendix

Proof of Proposition 1. We start by deriving a seller’s optimal choice of activities given the
buyer value function V ∈ BC([θB, θB]). The seller’s optimal value function, Ũ : [θS, θS] ×
[θB, θB] × P × [0, 1) × BC([θB, θB]) → <, is defined such that for all P ∈ P , δ ∈ [0, 1),

25



V ∈ BC([θB, θB]) and matches (θB, θS),

ÛθS(θB, P ; δ, V ) = max
a≤P (θB ,θS)

πθS(θB, a)IπθB (θS ,a)≥δVθB . (6)

To simplify the analysis of the seller’s problem in (6), we study a related problem. We
artificially expand the set of activities to A ∪ {r}, where r denotes an action by the seller
that consists of refusing to transact with a buyer. We likewise extend the payoff functions
to A ∪ {r} by specifying that for all (θB, θS), πθB(θS, r) = πθS(θB, r) = 0. Fix P ∈ P ,
δ ∈ [0, 1) and V ∈ BC([θB, θB]). The optimal activity correspondence for sellers, α̌ :

[θS, θS]× [θB, θB]×P× [0, 1)×BC([θB, θB]) ⇒ A∪{r}, is such that, for all matches (θB, θS),

α̌θS(θB, P ; δ, V ) ∈ arg max
a∈{a′≤P (θB ,θS):πθB (θS ,a′)≥δVθB }∪{r}

πθS(θB, a).

Note that we have assumed that either seller θS proposes an activity that buyer θB accepts
or proposes refusal option r.

Define the correspondence ϕ : [θB, θB] × [θS, θS] × P × [0, 1) × BC([θB, θB]) ⇒ A as
ϕ(θB, θS, P, δ, V ) = {a′ ≤ P (θB, θS) : πθB(θS, a

′) ≥ δVθB} ∪ {r}. Although ϕ is upper
hemicontinuous,16 ϕ may fail to be lower hemicontinuous. In particular, such failures of
lower hemicontinuity occur whenever the set of activities buyers accept, {a′ ≤ P (θB, θS) :

πθB(θS, a
′) ≥ δVθB}, is empty at (θB, θS, P, δ, V ) but nonempty in some neighborhood of

(θB, θS, P, δ, V ). While we cannot apply the usual maximum theorem of Berge (see Aliprantis
and Border (2006)) to the sellers’ problem above to guarantee the continuity of their optimal
value function, we can apply a generalization of the theorem due to Ausubel and Deneckere
(1993). Since πθS is continuous, applying their result reduces to proving the following lemma.

Lemma 1. ϕ is upper hemicontinuous. Moreover, for any (θB, θS, P, δ, V ) ∈ [θB, θB] ×
[θS, θS] × P × [0, 1) × BC([θB, θB]), a ∈ ϕ(θB, θS, P, δ, V ) and ε > 0, there exists a neigh-
borhood N of (θB, θS, P, δ, V ) such that if (θ′B, θ

′
S, P

′, δ′, V ′) ∈ N , then there exists a′ ∈
ϕ(θ′B, θ

′
S, P

′, δ′, V ′) such that πθ′S(θ′B, a
′) > πθS(θB, a)− ε.

Proof. We first show that ϕ is upper hemicontinuous. Fix {(θnB, θnS, P n, δn, V n)} → (θB, θS, P, δ, V ),
along with {an} → a such that, for all n, an ∈ ϕ(θnS, θ

n
B, P

n, δn, V n). The nontrivial case
is that in which there exists n? such that an ∈ A for all n ≥ n?. Then, for all n ≥ n?,
an ≤ P n(θnB, θ

n
S) and πθnB(θnS, a

n) ≥ δnV n
θnB
. First, note that a ≤ P (θB, θS). Second, we need

16We show this below in Lemma 1.
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to establish that πθB(θS, a) ≥ δVθB , which follows from the continuity of πθB and VθB . Hence,
a ∈ ϕ(θB, θS, P, δ, V ) as desired.

We now show the second condition holds. Fix any (θB, θS, P, δ, V ) ∈ [θB, θB]× [θS, θS]×
P × [0, 1) × BC([θB, θB]), a ∈ ϕ(θB, θS, P, δ, V ) and ε > 0. If a 6= r and there exists a
neighborhood N of (θB, θS, P, δ, V ) such that, for any (θ′B, θ

′
S, P

′, δ′, V ′) ∈ N , there exists
a′ ∈ ϕ(θ′B, θ

′
S, P

′, V ′) such that a′ 6= r, then the condition holds by the continuity of `, h
and πθS . Similarly if a = r, then since, for all (θB, θS, P, δ, V ), r ∈ ϕ(θB, θS, P, δ, V ) and
πθS(θB, r) = 0, the condition holds. The remaining case is that a 6= r and that for all
neighborhoods N of (θB, θS, P, δ, V ), there exists (θ′B, θ

′
S, P

′, δ′, V ′) ∈ N such that {r} =

ϕ(θ′B, θ
′
S, P

′, δ′, V ′). We claim that it must be that a = α?θB ,P (θS) and that πθB(θS, a) = δVθB .
To see this, suppose, towards a contradiction, that a 6= α̂θB(θS, P ) and note that since a 6= r

we must have πθB(θS, a) ≥ δVθB . By the strict quasiconcavity of πθB , since a 6= α̂θB(θS, P ),
there exists a′ ≤ P (θB, θS) such that πθB(θS, a

′) > δVθB . This implies that there exist
a′′ ∈ A and a neighborhood N ′ of (θB, θS, P, V ) such that, for any (θ′B, θ

′
S, P

′, δ′, V ′) ∈ N ′,
a′′ ∈ ϕ(θ′B, θ

′
S, P

′, δ′, V ′), which yields the desired contradiction. This argument also shows
that, since a 6= r, we must have πθB(θS, a) = δVθB . Hence, since α̂θB(θS, P ) = α̂θB(θS)

(item 2 of Assumption 4), it must be the case that πθS(θB, a) = 0 (item 1 of Assumption 4).
Since for any neighborhood N of (θB, θS, P, δ, V ), given any (θ′B, θ

′
S, P

′, δ′, V ′) ∈ N we have
r ∈ ϕ(θ′B, θ

′
S, P

′, δ′, V ′) and πθ′S(θ′B, r) = 0, the condition from above holds and the proof is
complete.

By the maximum theorem of Ausubel and Deneckere (1993), sellers’ value functions

ǓθS(θB, P ; δ, V ) = max
a∈{a′≤P (θB ,θS):πθB (θS ,a′)≥δVθB }∪{r}

πθS(θB, a) (7)

are continuous and the correspondence α̌θS(θB, P ; δ, V ) is upper hemicontinuous. Note that
by quasiconcavity, α̌ is single-valued whenever {a′ ≤ P (θB, θS) : πθB(θS, a

′) ≥ δVθB} is empty
or contains more than one element, and furthermore it never contains more than two elements
{a, r} with a ≤ P (θB, θS).

To derive a solution to the sellers’ problem in (6) through the solution α̌ that conforms
to equilibrium condition (5), we define α̃ such that

α̃θS(θB, P ; δ, V ) =

α̂θB(θS) whenever r ∈ α̌θS(θB, P, δ;V )

α̌θS(θB, P ; δ, V ) otherwise.
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First, note that, by definition, α̃θS(θB, P ; δ, V ) is single-valued everywhere. Second, note
that α̃ is continuous. This follows since α̌ is upper hemicontinuous, with failures of lower
hemicontinuity only when α̌θS(θB, P ; δ, V ) = {α̂θB(θS), r}. Finally, note that α̃ achieves value
Ũ from (6) since α̌ achieves value Ǔ from (7).

Given any α̃, we compute, for each buyer type θB, a new value function ṼθB through stan-
dard dynamic programming techniques. Consider the mapping T : P×[0, 1)×BC([θB, θB])→
BC([θB, θB]) such that

TθB(P, δ, V ) =

ˆ
[θS ,θS ]

max{πθB(θS, α̃θS(θB, P ; δ, V )), δVθB}fS(θS)dθS.

Lemma 2. T is a continuous function.

Proof. First, we show that TθB is well-defined, that is, for any (P, δ, V ) ∈ P × [0, 1) ×
BC([θB, θB]), we have T (P, δ, V ) ∈ BC([θB, θB]). T (P, δ, V ) is bounded because πθB(θS, a) ≤
π and VθB ≤ π

1−δ . Since α̃θS(θB, P ; δ, V ) is continuous in θB, then the continuity of πθB and
V ensures that, by the bounded convergence theorem, T (P, δ, V ) is a continuous function of
θB.

Second, we show that the mapping T is continuous. No issue arises with continuity in δ,
so we focus on continuity in (P, V ) and for convenience ignore the dependence of T and α̃
on δ. Fix any P, P ′ ∈ P and V, V ′ ∈ BC([θB, θB]). Then

||T (P, V )− T (P ′, V ′)||∞ = sup
θB∈[θB ,θB ]

∣∣∣∣ ˆ
[θS ,θS ]

max{πθB(θS, α̃θS(θB, P ;V )), δVθB}fS(θS)dθS

−
ˆ
[θS ,θS ]

max{πθB(θS, α̃θS(θB, P
′;V ′)), δV ′θB}fS(θS)dθS

∣∣∣∣
≤ sup

θB∈[θB ,θB ]

ˆ
[θS ,θS ]

∣∣∣∣max{πθB(θS, α̃θS(θB, P ;V )), δVθB}

−max{πθB(θS, α̃θS(θB, P
′;V ′)), δV ′θB}

∣∣∣∣fS(θS)dθS

≤ sup
θB∈[θB ,θB ]

ˆ
[θS ,θS ]

max
{
|πB(θS, α̂θS(θB, P ))− πB(θS, α̂θS(θB, P

′))| ,

δ
∣∣VθB − V ′θB ∣∣ }fS(θS)dθS. (8)

To show the second inequality holds, we exploit the particular selection from α̌ defining α̂.
Fix θB. The inequality is certainly valid for those θS for which both πθB(θS, α̃θS(θB, P ;V )) ≤
δVθB and πθB(θS, α̃θS(θB, P

′;V ′)) ≤ δV ′θB . Note that if both πθB(θS, α̃θS(θB, P ;V )) > δVθB
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and πθB(θS, α̃θS(θB, P
′;V ′)) > δV ′θB , then the seller θS’s choice is unconstrained under both

(P, V ) and (P ′, V ′), and by the strict quasiconcavity of πθS , α̃θS(θB, P ;V ) = α̂θS(θB, P ) and
α̃θS(θB, P

′;V ′) = α̂θS(θB, P
′), the second inequality is valid. Now suppose that θS is such that

πθB(θS, α̃θS(θB, P ;V )) > δVθB and πθB(θS, α̃θS(θB, P
′;V ′)) ≤ δV ′θB . If πθB(θS, α̂θS(θB, P )) −

δV ′θB ≤ 0, then ∣∣πθB(θS, α̃θS(θB, P ;V ))− δV ′θB
∣∣ ≤ δ

∣∣VθB − V ′θB ∣∣.
as α̃θS(θB, P ;V ) = α̂θS(θB, P )). Suppose instead that πθB(θS, α̂θS(θB, P )) − δV ′θB > 0. Note
that since πθB(θS, α̃θS(θB, P

′;V ′)) ≤ δV ′θB , it must be that πθB(θS, α̂θS(θB, P
′)) ≤ δV ′θB , oth-

erwise α̃θS(θB, P
′;V ′) would not be optimal for seller θS. Hence,

∣∣πθB(θS, α̃θS(θB, P ;V ))− δV ′θB
∣∣ ≤ ∣∣πB(θS, α̂θS(θB, P ))− πB(θS, α̂θS(θB, P

′))
∣∣,

which implies that the second inequality is valid. A symmetric argument holds for the case
of πθB(θS, α̃θS(θB, P ;V )) ≤ δVθB and πθB(θS, α̃θS(θB, P

′;V ′)) > δV ′θB .
Since α̂θS is continuous,

lim
P ′→P

∣∣πB(θS, α̂θS(θB, P ))− πB(θS, α̂θS(θB, P
′))
∣∣ = 0.

Also, since limV ′→V ||V − V ′||∞ = 0,

lim
V ′→V

∣∣VθB − V ′θB ∣∣ = 0

for all θB. These two facts along with (8) imply

lim
(P ′,V ′)→(P,V )

||T (P, V )− T (P ′, V ′)||∞ = 0,

which completes the proof.

Note that if, given any (P, δ) ∈ P× [0, 1), we consider the mapping TP,δ : BC([θB, θB])→
BC([θB, θB]) such that TP,δ(V ) = T (P, δ, V ), then TP,δ is well-defined and, by (8)

||TP,δ(V )− TP,δ(V ′)||∞ = ||T (P, δ, V )− T (P, δ, V ′)||∞

≤ δ sup
θB∈[θB ,θB ]

ˆ
[θS ,θS ]

∣∣VθB − V ′θB ∣∣fS(θS)dθS

= δ||V − V ′||∞.
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That is, TP,δ is a contraction. Hence, given any (P, δ) ∈ P × [0, 1), TP,δ has a unique fixed
point, Ṽ (P, δ), which implies unique equilibrium payoffs for buyers and sellers. This in turn
implies the uniqueness of equilibrium strategies, which completes the proof of the existence
of a unique market equilibrium given P ∈ P .

Proof of Proposition 2. Because P is compact, it suffices to show that W̄ is a continuous
function of P . We have that

W̄ (P, δ) =

ˆ
[θB ,θB ]

ˆ
MθB

(P,δ)

πR(θB, θS, αθS(θB))fS(θS)fB(θB)dθSdθB,

where, given the results of Proposition 3, MθB(P, δ) ⊆ [θS, θS] is such that MθB(P, δ) =

{θS ∈ [θS, θS]; πθB(θS, α̂θB(θS)) ≥ δV ?
θB

(P, δ)}. Since fS and fB are atomless and πR is
continuous, that W̄ (P, δ) is continuous in (θB, P ) follows if, for any (θB, P ), the set {θS ∈
[θS, θS]; πθB(θS, α̂θB(θS)) = δV ?

θB
(P, δ)} has zero Lebesgue measure. By quasiconcavity of πθB

in θS and strict quasiconcavity of πθB in a, we have that πθB(θS, α̂θB(θS)) is strictly decreasing
in |θS−σ(θB)|. Hence, if there exists θ′S ∈ {θS ∈ [θS, θS]; πθB(θS, α̂θB(θS)) = δV ?

θB
(P, δ)}, then

{θS ∈ [θS, θS]; πθB(θS, α̂θB(θS)) = δV ?
θB

(P, δ)} = {θS ∈ [θS, θS]; |θS − σ(θB)| = |θ′S − σ(θB)|},
which has zero Lebesgue measure. Otherwise, {θS ∈ [θS, θS]; πθB(θS, α̂θB(θS)) = δV ?

θB
(P, δ)}

is empty and there is nothing to prove. Continuity of W̄ then follows from the bounded
convergence theorem.

Proof of Proposition 3.

1. We first show that MθB(P, δ) 6= ∅. Suppose, towards a contradiction, that MθB(P, δ) =

∅. Then it must be that V ?
θB

(P, δ) = 0. But since πθB , πθS ≥ 0, our definition of equi-
librium implies that MθB(P, δ) 6= ∅, yielding the desired contradiction. Next, note that
by Assumption 4, for any match (θB, θS), {a ≤ P (θB, θS);πθB(θS, a) ≥ δV ?

θB
(P, δ)} 6= ∅

if and only if πθB(θS, α̂θB(θS)) ≥ δV ?
θB

(P, δ). Our definition of equilibrium and the fact
that πθS ≥ 0 implies that MθB(P, δ) = {θS ∈ [θS, θS]; πθB(θS, α̂θB(θS)) ≥ δV ?

θB
(P, δ)}.

By quasiconcavity of πθB and convexity of [θS, θS], it follows that MθB(P, δ) is convex
and, since it is nonempty, it contains σ(θB).

2. Fix θS ∈ MθB(P, δ) and note that if πθB(θS, α̂θS(θB, P )) ≥ δV ?
θB

(P, δ), then by our
definition of equilibrium I?θB(θS, α̂θS(θB, P )) = 1, and hence α?θS(θB, P ) = α̂θS(θB, P ). If
instead πθB(θS, α̂θS(θB, P )) < δV ?

θB
(P, δ), then by part 1, πθB(θS, α̂θB(θS)) ≥ δV ?

θB
(P, δ).

Since, by Assumptions 2 and 4, α̂θS(θB) ≥ α̂θS(θB, P ) > α̂θB(θS), quasiconcavity and
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the optimality of sellers’ activity choices ensures that α?θS(θB, P ) must equal the unique
value of a ∈ [α̂θB(θS), α̂θS(θB, P )) such that πθB(θS, a) = δV ?

θB
(P, δ).

3. We first establish the following lemma.

Lemma 3. For any V ∈ BC([θB, θB]) and any θB, T (V, δ)θB ≥ T (V, δ′)θB .

Proof. It suffices to show that

πθB(θS, α̃θS(θB, P ; δ, V )) ≥ πθB(θS, α̃θS(θB, P ; δ′, V )) (9)

for all θS. First, consider any θS such that πθB(θS, α̂θB(θS)) < δVθB . Since δVθB > δ′VθB ,

πθB(θS, α̃θS(θB, P ; δ, V )) = πθB(θS, α̂θB(θS))

≥ πθB(θS, α̃θS(θB, P ; δ′, V )).

Second, consider any θS such that πθB(θS, α̂θB(θS)) ≥ δVθB . Equation (9) holds because
for δ > δ′

α̃θS(θB, P ; δ̃, V ) ∈ arg max
{a≤P (θB ,θS):πθB (θS ,a)≥δ̃VθB }

πθS(θB, a)

for any δ̃ ∈ {δ, δ′}.

Suppose, towards a contradiction, that for some θB, V ?
θB

(P, δ) < V ?
θB

(P, δ′). Then

T (V ?(P, δ), δ′)θB ≤ T (V ?(P, δ), δ)θB

= V ?
θB

(P, δ)

< V ?
θB

(P, δ′),

where the first inequality follows from Lemma 3. Fix V̄ ∈ BC(Θ) such that V̄θB −
V ?
θB

(P, δ) and, for all θ′B, |V̄θ′B − V
?
θ′B

(P, δ′)| ≤ |V ?
θB

(P, δ) − V ?
θB

(P, δ′)|. Such a V̄ exists
by the continuity of V ?. It follows that supθB |V̄θ′B−V

?
θ′B

(P, δ′)| = |V ?
θB

(P, δ)−V ?
θB

(P, δ′)|.
Furthermore, T (V̄ , δ′)θB = T (V ?(P, δ), δ′)θB since sellers’ best responses α̂ to buyer θB
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depend only on V ?
θB
. Hence

||T (V̄ , δ′)− V ?(P, δ′)||∞ = sup
θ′B

|T (V̄ , δ′)θ′B − V
?
θ′B

(P, δ′)|

≥ |V ?
θB

(P, δ′)− T (V ?(P, δ), δ′)θB |

≥ |V ?
θB

(P, δ′)− V ?
θB

(P, δ)|

> δ||V̄ − V ?(P, δ′)||∞,

which contradicts the fact that T is a contraction.

4. We mimic the proof of part 3. It suffices to show that for any V ∈ BC([θB, θB]), any
θB and P ′ ⊆ P , T (P ′, V )θB ≥ T (P, V )θB . Hence, it suffices to show that

πθB(θS, α̃θS(θB, P
′; δ, V )) ≥ πθB(θS, α̃θS(θB, P ; δ, V ))

for all θS. First, consider any θS such that πθB(θS, α̂θB(θS)) < δVθB . Then

πθB(θS, α̃θS(θB, P ;V, δ)) = πθB(θS, α̂θB(θS))

= πθB(θS, α̃θS(θB, P
′;V, δ)).

Second, consider any θS such that πθB(θS, α̂θB(θS)) ≥ δVθB . By our results from part
2, for those θS such that πθB(θS, α̃θS(θB, P

′; δ, V )) = δVθB , then α̃θS(θB, P ; δ, V ) =

α̃θS(θB, P
′; δ, V ). For those θS such that πθB(θS, α̃θS(θB, P

′; δ, V )) > δVθB , quasicon-
cavity yields πθB(θS, α̃θS(θB, P ; δ, V )) ≤ πθB(θS, α̃θS(θB, P

′; δ, V )) since our results from
part 2 imply that

α̃θS(θB, P ; δ, V ) ≥ α̂θS(θB, P
′)

= α̃θS(θB, P
′; δ, V )

≥ α̂θB(θS).

This completes the proof.

Proof of Proposition 4. Fix θB, P ′ and δ′ < δ.

1. Note that by part 4 of Proposition 3, V ?
θB

(P ′, δ) ≥ V ?
θB

(P ′, δ′) and MθB(P ′, δ) ⊆
MθB(P ′, δ′). By part 2 of Proposition 3, α?θS(θB, P, δ

′) ≥ α?θS(θB, P, δ) for all θS ∈
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MθB(P, δ′). Hence, if α?θS(θB, P, δ) ≥ α̂R(θB, θS), then α?θS(θB, P, δ
′) ≥ α̂R(θB, θS). This

implies RθB(P, δ) ⊆ RθB(P, δ′).

2.

(a) Let P ′ be an optimal regulatory under δ′ and suppose that α?σ(θB)(θB, P
′, δ′) <

α̂R(θB, σ(θB)). Fix P > P ′ such that δ′V ?(P ′, δ′) = δV ?(P, δ), which ensures
that MθB(P ′, δ′) = MθB(P, δ). For δ > δ′ sufficiently close to δ′, such a P ex-
ists by parts 3 and 4 of proposition 3 since α̂σ(θB)(θB, P

′) = α?σ(θB)(θB, P
′, δ′) <

α̂R(θB, σ(θB)) ≤ α̂σ(θB)(θB). First, since δ′V ?(P ′, δ′) = δV ?(P, δ) and P > P ′, we
have that α?θS(θB, P, δ) ≥ α?θS(θB, P

′, δ′). Second, by part 2 of proposition 3, we
have that α?θS(θB, P, δ) = α?θS(θB, P

′, δ′) for all θS such that πθB(θS, α̂θS(θB, P
′)) ≤

δV ?
θB

(P, δ) = δ′V ?
θB

(P ′, δ′). Third, since P > P ′, α?θS(θB, P, δ) > α?θS(θB, P
′, δ′) for

those θS sufficiently close to σ(θB). We can choose δ sufficiently close to δ′ such
that for all such θS, α?θS(θB, P, δ) < α̂R(θB, θS), which ensures that

ˆ
MθB

(P,δ)

πR(θS, α
?
θS

(θB, P, δ))fS(θS)dθS

>

ˆ
MθB

(P ′,δ′)

πR(θS, α
?
θS

(θB, P
′, δ′))fS(θS)dθS.

Since under either match or buyer-specific regulation a different regulatory en-
vironment P can be found in the same way as above for each θB, we have that
W ?(δ) > W ?(δ′).

(b) Let P ′ be an optimal regulation under δ′. We show that if δ is sufficiently large,
RθB(P ′, δ) = ∅ and hence, for all θS ∈ MθB(P ′, δ), α?θS(θB, P

′, δ) ≤ α̂R(θB, θS).
This implies that if P is an optimal regulation under δ, then P > P ′.
First, we show that

lim
δ→1

MθB(P ′, δ) ⊆ {θS ∈ [θS, θS]; πθB(θS, α̂θB(θS)) ≥ πθB(σ(θB), α̂σ(θB)(θB, P
′))}.

To do so, we establish that limδ→1 V
?
θB

(P ′, δ) ≥ πθB(σ(θB), α̂θS(θB, P
′)). Towards

a contradiction, suppose that instead

lim
δ→1

δV ?
θB

(P ′, δ) = lim
δ→1

V ?
θB

(P ′, δ)

< πθB(σ(θB), α̂θS(θB, P
′)). (10)
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Then it follows by (10) and part 2 of Proposition 3 that for all δ sufficiently
close to 1, α?θS(θB, P

′, δ) = α̂θS(θB, P
′) for some neighborhood N(δ) of σ(θB),

with limδ→1N(δ) containing a positive mass of seller types. Consider the buyer’s
strategy of accepting transactions only with those sellers θS ∈ N(δ) such that
πθB(σ(θB), α̂θS(θB, P

′)) > limδ→1 V
?
θB

(P ′, δ). For sufficiently large δ, the payoff to
this strategy exceeds limδ→1 V

?
θB

(P ′, δ), yielding the desired contradiction. Hence,
since

lim
δ→1

δV ?
θB

(P ′, δ) = lim
δ→1

V ?
θB

(P ′, δ)

≥ πθB(σ(θB), α̂θS(θB, P
′)),

part 1 of Proposition 3 implies that for any θS ∈ limδ→1MθB(P ′, δ),

πθB(θS, α̂θB(θS)) ≥ lim
δ→1

δV ?
θB

(P ′, δ)

≥ πθB(σ(θB), α̂σ(θB)(θB, P
′)), (11)

as desired.

By equation (11), we have that limδ→1 α
?
θS

(θB, P
′, δ) ≤ αθS(θB, P

′), where αθS(θB, P
′)

is defined such that πθB(θS, αθS(θB, P
′)) = πθB(σ(θB), α̂σ(θB)(θB, P

′)). By Assump-
tion 3, we have that πθB(θS, α̂R(θB, θS)) is decreasing in |θB − σ(θB)|. On the other
hand, we have that πθB(θS, αθS(θB, P

′)) is constant in |θB − σ(θB)|. Hence, since
α?σ(θB)(θB, P

′, δ′) < α̂R(θB, σ(θB)), we have that, for all θS ∈ limδ→1MθB(P ′, δ),

lim
δ→1

α?θS(θB, P
′, δ) ≤ αθS(θB, P

′)

< α̂R(θB, θS),

which shows that limδ→RθB(P ′, δ) = ∅. Since our argument holds for all θB, our result
is valid under any system of regulation.
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