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Abstract

This appendix contains results omitted from ‘Two-Party Competition with Persis-
tent Policies’. In particular, it contains the proof of Proposition 1 on long-run outcomes
in the absence of policy persistence, as well as the equilibrium constructions that com-
plete the proofs of Propositions 3 and 4 (sufficiency). This appendix also contains all
proofs relating to the extensions discussed in the paper: forward-looking voters, limited
policy persistence, office-motivated parties, and median uncertainty.
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A No Policy Persistence

Proof of Proposition 1. As noted in the text, 1
1−δJ

uJ(M) is a subgame perfect equilibrium

payoff for party J following any history. Since party J can always enforce this payoff by

committing to policy M following any history, this payoff is the lowest subgame perfect

equilibrium payoff for J . Hence a policy path {yt} is a subgame perfect equilibrium policy

path only if
∑∞

t=0 δ
tuJ(yt) ≥ 1

1−δJ
uJ(M) for all J and all t.

The first step in the proof shows that the game’s only subgame perfect equilibrium policy

path following any history is the indefinite repetition of the median policy. Strict concavity

is needed to ensure that if y 6= M is strictly on party J ’s side of the median, then uJ(y) −
uJ(M) < u−J(M) − u−J(y).1 This holds since any strictly concave functions uL and uR

defined on [0, 1] with uL strictly decreasing and uR strictly increasing can be normalised

such that |u′L(M)| = |u′R(M)|. Suppose y < M . By strict concavity, for all ` ∈ [y,M) we

have |u′L(`)| < |u′L(M)| = |u′R(M)| < |u′R(`)|, and hence uL(y)− uL(M) < uR(M)− uR(y).

Consider subgame perfect equilibrium policy path {yt} following some history with y0 6=
M , and suppose that y0 is on J ’s side of the median. Define

D0
J = 0,

D0
−J =

u−J(M)− u−J(y1)

δ−J
.

For any i ≥ 1 and yt (weakly) on J ’s side of the median, define Dt
J and Dt

−J recursively as

Dt
J = max

{
0,
Dt−1
J + [uJ(M)− uJ(yt)]

δJ

}
,

Dt
−J =

Dt−1
−J + [u−J(M)− u−J(yt)]

δ−J
.

That is, interpret Dt
J ≥ 0 as the payoff ‘debt’ for party J at stage t of subgame perfect

equilibrium policy path {yt} relative to path (M,M, ...). This debt collects all deviations

from payoff uJ(M); if party J makes a loss with respect to uJ(M) at yt, then the equilibrium

payoff from yt+1 needs to yield an excess of at least Dt
J over 1

1−δJ
uJ(M). Debts grow by

1Any assumptions that yields this property are sufficient for the result of Proposition 1. For example, if
uL and uR are weakly concave but strictly concave in a neighbourhood of M .
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factor 1
δJ

each period since they are incurred in the current period and reimbursed in later

periods. Negative debts are never incurred since party J must be guaranteed the payoff
1

1−δJ
uJ(M) after all histories.

Since y0 6= M , debts (D0
L, D

0
R) are such that D0

J > 0 for some J . Suppose without loss of

generality that δL ≤ δR. First note that for all t > 0, it cannot be that Dt
L = Dt

R = 0, since

D0
J > 0 and whenever Dt

J < Dt−1
J , it must be that yt is strictly on J ’s side of the median and

hence that Dt
−J > Dt−1

−J . Next, note that for all J , we have that lim infi→∞D
t
J = 0, and also

that Dt
J = 0 infinitely often. To see this, suppose that there exists some k such that Dt

J > 0

for all t ≥ k. Then the equilibrium value to party J from subgame perfect equilibrium policy

path {yt}∞t=k is strictly less than 1
1−δJ

uJ(M), a contradiction.

Suppose now that y0 < M , and hence that D0
L = 0 < D0

R. Then either

i. Dt
L = 0 for all t > 0.

ii. Dt
L > 0 for some t > 0.

In case i, it must be that yt ≤M for all t > 0, and hence that limt→∞D
t
R ≥ limt→∞

D0
R

δtR
=∞,

a contradiction. We now see that assuming y0 < M is without loss of generality. First, any

subgame perfect equilibrium policy path that deviates from the median policy after some

history must have some subsequence that begins at stage k with debt levels Dk
J = 0 < Dk

−J .

Second, assume instead that D0
L > 0 = D0

R. Then either Dt
R = 0 for all t, which leads to

contradiction, or there exists k such that Dk
L = 0, in which case we must have Dk

R > 0. Now

consider case ii above. There must exist n > m ≥ 0 with n − m > 1 such that Dm
R > 0,

Dm
L = Dn

L = 0 and Dt
L > 0 for t ∈ {m + 1, ..., n − 1}. We want to show that Dm

R < Dn
R.

Consider the sequence {ŷt}nt=m+1 that solves the following minimisation problem.

min
{yt}nt=m+1∈Xn−m

Dn
R subject to Dm

L = Dn
L = 0, given Dm

R > 0. (1)

{ŷt}ni=m+1 exists since Dn
R is continuous and Xn−m is compact. Suppose that {ŷt}ni=m+1 is

such that D̂n−1
L > 0, where D̂t

J is the debt of party J under {ŷt}ni=m+1. Hence since Dn
L = 0

it must be that ŷn < M . Suppose that D̂n−2
R + [uR(M)− uR(ŷn−1)] < 0, which implies that

D̂n−1
R = 0 and that ŷn−1 > M . For ε > 0, consider ȳn−1 = ŷn−1 − ε and ȳn = ŷn + ηε, where

ηε is chosen such that D̄n
L = 0. For sufficiently small ε, we have that D̄n−1

R = D̂n−1
R = 0 and

D̄n
R < D̂n

R, a contradiction. Now suppose that D̂n−2
R +[uR(M)−uR(ŷn−1)] ≥ 0. D̂n

R is strictly

increasing in ŷn−1 if

−u
′
R(ŷn−1)

δ2R
− u′R(ŷn)

δR

dŷn

dŷn−1
> 0, (2)
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where dŷn

dŷn−1 is given by

u′L(ŷn−1)

δ2L
− u′L(ŷn)

δL

dŷn

dŷn−1
= 0,

or dŷn

dŷn−1 = − 1
δL

u′L(ŷ
n−1)

u′L(ŷ
n)

, which comes from partially differentiating the constraint Dn
L = 0

with respect to yn−1 and yn. We can rewrite (2) as

u′L(ŷn−1)

u′L(ŷn)
>
δL
δR

u′R(ŷn−1)

u′R(ŷn)
.

Say ŷn−1 ≥ M . Then |u′L(ŷn−1)| ≥ |u′R(ŷn−1)|, δL
δR
≤ 1 and |u′L(ŷn)| < |u′R(ŷn)| (since

yn < M) imply that (2) holds, and hence that {ŷ}nt=m+1 does not solve (1), a contradiction.

Hence it must be that ŷn−1 < M .

This pairwise necessary condition for optimality can be used all along the sequence

{ŷ}nt=m+1 to show that a solution to (1) with ŷn < M must have ŷt < M for all t ∈
{m + 1, ..., n − 1}. But consider instead sequence {ỹ}nt=m+1 with ỹt = M for all t. This

sequence satisfies the constraints of (1), and is such that D̃n
R =

DmR
δn−mR

< Dn
R for any {yt}nt=m+1

with Dn−1 < M . Hence, for the purported equilibrium sequence from above, we have as

desired that Dn
R > Dm

R . Considering the full policy sequence, we have that whenever Dt
L > 0

for t ∈ {m+1, n−1}, then Dn
R > Dm

R . Furthermore, whenever Dt
L = 0 for t ∈ {m+1, n−1},

then again Dn
R > Dm

R since Dt
L = 0 only if yt ≤ M , and as shown above if Dm

L = 0, then

Dm
R > 0. Hence, given the subgame perfect equilibrium path {yt} following some history for

which Dk
R > 0, we have that limt→∞D

t
R =∞, a contradiction.

The previous argument shows that the unique subgame perfect equilibrium policy path

following any history is (M,M, ...). It remains to be shown that both parties’ strategies must

call for them to commit to the median following any history. If party J ’s strategy calls for

some policy y 6= M after some history, then party −J must win the election with policy M .

Since y 6= M , party −J can win the election with a policy it prefers to M , say y′. Since

following any deviation, party −J payoffs revert to 1
1−δ−J −J

(M), deviating to y′ is profitable

for −J .

B Bounded Extremism: Sufficiency

The following claim completes the proof of Proposition 3: If `∗ ≥ 2M − r∗, the strategy

profile (σ`
∗
L , σ

my
R ) forms an equilibrium. If `∗ < 2M − r∗, the strategy profile (σmyL , σr

∗
R ) forms

an equilibrium. To show this, suppose that `∗ ≥ 2M − r∗. First verify the optimality of L’s
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proposed strategy. Given (σ`
∗
L , σ

my
R ) compute

VL(σ`
∗

L , σ
my
R ; (R, r)) =


1

1−δ2L
U+
L (`∗) for r ∈ [2M − `∗, 1],

1
1−δ2L

U+
L (2M − r) for r ∈ [M, 2M − `∗),

1
1−δ2L

uL(r) for r ∈ [0,M).

Note that for all r, r′ such that r > r′, σL(R, r) ∈ W (R, r) and σL(R, r) 6= σL(R, r′) ∈
W (R, r′),

VL(σ`
∗

L , σ
my
R ; (R, r)) > VL(σ`

∗

L , σ
my
R ; (R, r′)).

Hence, at any state (R, r) such that σL(R, r) ∈ W (R, r), party L cannot profit from one-

shot deviation `d such that σL(R, r′) = ` for some r′ 6= r. Hence only one-shot deviations

`d ∈ [0, `∗) ∪ (M, 1] can be profitable for L at some state.

The value of setting `d ∈ [0, `∗) if winning at (R, r) is

uL(`d)+δLuL(2M − `d) + δ2LVL(σ`
∗

L , σ
my
R ; (R, 2M − `d))

= U+
L (`d) +

δ2L
1− δ2L

U+
L (`∗).

`d ∈ [0, `∗) is winning only in states (R, r) with r ∈ [2M − `d, 1]∪ [0, `d]. For r ∈ [2M − `d, 1]

VL(σ`
∗

L , σ
my
R ; (R, r)) =

1

1− δ2L
U+
L (l∗)

> U+
L (`d) +

δ2L
1− δ2L

U+
L (`∗),

where the inequality follows from Lemma 1 since `d < `∗. For r ∈ [0, `d]

VL(σ`
∗

L , σ
my
R ; (R, r)) =

1

1− δ2L
uL(r)

> U+
L (`d) +

δ2L
1− δ2L

U+
L (`∗),

where the inequality follows since r ≤ `d.

The value of setting `d ∈ (M, 1] if winning at (R, r) is

1

1− δ2L
uL(`d).
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`d ∈ (M, 1] is winning only in states (R, r) with r ∈ [2M−`d,M ]∪[`d, 1]. For r ∈ [2M−`d,M ]

VL(σ`
∗

L , σ
my
R ; (R, r)) =

1

1− δ2L
uL(r)

>
1

1− δ2L
uL(`d),

where the inequality follows since r < `d. For r ∈ [`d, 1]

VL(σ`
∗

L , σ
my
R ; (R, r)) >

1

1− δ2L
uL(M)

>
1

1− δ2L
uL(`d),

where the first inequality follows since r > M , and the second since `d > M . Hence, no

profitable deviation for L exists and σ`
∗
L is optimal when facing σmyR .

Now verify the optimality of R’s proposed strategy. Given (σ`
∗
L , σ

my
R ) compute

VR(σ`
∗

L , σ
my
R ; (L, `)) =


uR(2M − `) + δR

1−δ2R
U−R (`∗) for ` ∈ [0, `∗),

1
1−δ2R

U+
R (`) for ` ∈ [`∗,M),

1
1−δ2R

uR(`) for ` ∈ [M, 1).

Again, note that for all ` < `′, σR(L, `) ∈ W (L, `) and σR(L, `) 6= σR(L, `′) ∈ W (L, `′)

VR(σ`
∗

L , σ
my
R ; (L, `)) > VR(σ`

∗

L , σ
my
R ; (L, `′)).

Hence, at any state (L, `) such that σR(L, `) ∈ W (L, `), party R cannot profit by deviating to

any rd such that σR(L, `′) = rd for some `′ 6= `. Hence only one-shot deviations rd ∈ [0,M)

can be profitable for R at some state. That these cannot be profitable for R follows from

a verification similar to that for deviations `d ∈ (M, 1] for L above. Hence, no profitable

deviation for R exists and σmyR is optimal when facing σ`
∗
L .
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C Bounded Moderation: Sufficiency

Given a strictly increasing sequence {yt} → ˆ̀ with y0 = `∗ and yt, yt+1 and yt+2 satisfying

the conditions of Lemma 4 for all t ≥ 1, consider the following strategies

σ
ˆ̀

L∗(R, r) =



`∗ for all r ≥ 2M − `∗,

2M − r for all r ∈ (2M − yt, 2M − yt−1) with i > 0 odd,

yt for all r ∈ [2M − yt, 2M − yt−1] with i > 0 even,

2M − r for all r ∈ [M, 2M − ˆ̀],

Out for all r < M .

σ
ˆ̀

R(L, `) =



2M − ` for all ` < `∗,

yt for all ` ∈ [yt−1, yt] with i > 0 odd,

2M − ` for all ` ∈ (yt−1, yt) with i > 0 even,

2M − ` for all ` ∈ [ˆ̀,M ],

Out for all ` > M .

If instead `∗ < 2M−r∗, then for robust long-run policy outcome (ˆ̀, 2M− ˆ̀) with ˆ̀> 2M−r∗,
strategies (σ

ˆ̀
L, σ

ˆ̀
R∗) can be constructed in a similar manner with the roles of the parties

reversed.

The following claim completes the proof of Proposition 4: Suppose that `∗ ≥ 2M − r∗.
Given ˆ̀ > `∗ and a strictly increasing sequence {yt} → ˆ̀ with y0 = `∗ and yt, yt+1 and

yt+2 satisfying the conditions of Lemma 4 for all t ≥ 1, strategies (σ
ˆ̀
L∗ , σ

ˆ̀
R) form a form a

consistent equilibrium under which ˆ̀ is a robust long-run policy outcome. The equilibrium

(σ
ˆ̀
L, σ

ˆ̀
R∗) in the case of `∗ < 2M − r∗ can be determined similarly. To show this, suppose

`∗ ≥ 2M − r∗. First verify the optimality of L’s proposed strategy. Given (σ
ˆ̀
L∗ , σ

ˆ̀
R) and the
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conditions of the lemma for {yt}, compute

VL(σ
ˆ̀

L∗ , σ
ˆ̀

R; (R, r)) =



uL(`∗) + δL
1−δ2L

U−L (y1)

for r ∈ [2M − `∗, 1],

uL(2M − r) + δLuL(2M − yt) +
δ2L

1−δ2L
U+
L (yt+1)

for r ∈ (2M − yt, 2M − yt−1) with t > 0 odd,

uL(yt) + δL
1−δ2L

U−L (yt+1)

for r ∈ [2M − yt, 2M − yt−1] with t > 0 even,

1
1−δ2L

U+
L (2M − r) for r ∈ [M, 2M − ¯̀],

1
1−δ2L

uL(r) for r ∈ [0,M).

Note that for all r, r′ such that r > r′, σL(R, r) ∈ W (R, r) and σL(R, r) 6= σL(R, r′) ∈
W (R, r′),

VL(σ
ˆ̀

L∗ , σ
ˆ̀

R; (R, r)) > VL(σ
ˆ̀

L∗ , σ
ˆ̀

R; (R, r′)).

Hence, at any state (R, r) such that σL(R, r) ∈ W (R, r), party L cannot profit by deviating

to any `d such that σL(R, r′) = ` for some r′ 6= r. Hence only one-shot deviations `d ∈
[0, `∗) ∪

(⋃
t>0,t even[yt−1, yt)

)
∪ (M, 1] can be profitable for L at some state. The value to

setting `d ∈ [0, `∗) if winning at (R, r) is

U+
L (`d) + δ2LVL(σ

ˆ̀

L∗ , σ
ˆ̀

R; (R, 2M − `d)) = U+
L (`d) + δ2LVL(σ

ˆ̀

L∗ , σ
ˆ̀

R; (R, 2M − `∗)).

`d ∈ [0, `∗) is winning only in states (R, r) with r ∈ [2M − `d, 1]∪ [0, `d]. For r ∈ [2M − `d, 1]

VL(σ
ˆ̀

L∗ , σ
ˆ̀

R; (R, r)) > U+
L (`d) + δ2LVL(σ

ˆ̀

L∗ , σ
ˆ̀

R; (R, 2M − `d))

= U+
L (`d) + δ2LVL(σ

ˆ̀

L∗ , σ
ˆ̀

R; (R, 2M − r)).

since

VL(σ
ˆ̀

L∗ , σ
ˆ̀

R; (R, r)) = uL(`∗) +
δL

1− δ2L
U−L (y1)

>
1

1− δ2L
U+
L (`∗)

>
1

1− δ2L
U+
L (`d).
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The first inequality follows from Lemma 1 and the fact that y1 > `∗, and the second inequality

from Lemma 1 and the fact that `d < `∗. That a deviation to `d ∈ [0, `∗) in states (R, r)

with r ∈ [0, `d] is not profitable follows from an argument similar to that in Lemma 4. The

value of setting `d ∈ [yt−1, yt) for t > 0 odd if winning at (R, r) is

U+
L (`d) + δ2LVL(σ

ˆ̀

L∗ , σ
ˆ̀

R; (R, 2M − `d)).

`d ∈ [yt−1, yt) is winning only in states (R, r) with r ∈ [2M − `d, 1] ∪ [0, `d]. Consider

VL(σ
ˆ̀

L∗ , σ
ˆ̀

R; (R, 2M − yt)) =
1

1− δ2L
U+
L (yt−1)

= U+
L (yt−1) + δ2LVL(σ

ˆ̀

L∗ , σ
ˆ̀

R; (R, 2M − yt−1))

≥ U+
L (`d) + δ2LVL(σ

ˆ̀

L∗ , σ
ˆ̀

R; (R, 2M − `d)),

where the inequality follows from Lemma 1 and the fact that `∗ < yt−1 ≤ `d and the fact

that VL(σ
ˆ̀
L∗ , σ

ˆ̀
R; (R, 2M − yt−1)) = VL(σ

ˆ̀
L∗ , σ

ˆ̀
R; (R, 2M − `d)). Hence, the value to `d is

weakly smaller than the value following action yt = σL(R, 2M − yt), and hence for all states

(R, r) with r ∈ [2M − `d, 1] deviation to `d by L cannot be profitable. That a deviation

to `d ∈ [yt−1, yt) in states (R, r) with r ∈ [0, `d] is not profitable follows from an argument

similar to that in the case of equilibrium (σ`
∗
L , σ

my
R ), as does the argument that there is no

profitable deviation to `d ∈ (M, 1].

Arguments very similar to those for L above can determine R’s payoffs under (σ
ˆ̀
L∗ , σ

ˆ̀
R)

and verify that it constitutes an equilibrium. Clearly ˆ̀ is a robust long-run policy outcome

under (σ
ˆ̀
L∗ , σ

ˆ̀
R) since policy dynamics have ˆ̀ as a limit point starting from all more extreme

states.

D Extension: Forward-looking Voters

Proof of Proposition 5. Since I restrict attention to equlibria in which the median voter is

decisive, I consider a single representative median voter with utility function uM and discount

factor δM . A strategy for the voter is σM : ({L,R} ×X) × (X × {Out}) −→ {0, 1}, where

σM((I, x), z) = 0 if and only if the median voter supports incumbent I with policy x in

an election opposing it to −I with policy z. Assume that the median voter never abstains

so that in particular σM((I, x), Out) = 0 for all (I, x). A Markov perfect equilibrium with

forward-looking voters is a strategy profile (σL, σR, σM) such that for each state (I, x), (a)

given σM , (σL, σR) form a Markov perfect equilibrium, and (b) for any policy z, σM is a

best-response to (σL, σR) given ((I, x), z).
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Consider consistent equilibrium convergence path {yt} with associated consistent equi-

librium strategies (σL, σR). The proof shows that there exist an equilibrium with forward-

looking voters (σ′L, σ
′
R, σM) that generates the same convergence path. Assume for now that

on convergence paths, the median voter votes according to σmyM . To construct strategies

(σ′L, σ
′
R) in the game with forward-looking voters, the profile (σL, σR) needs to be modified

in two ways. First, consider policy yt such that σL(R, 2M − yt) = yt+1. For x ∈ [yt, yt+1),

define zt+1(x) ∈ [yt, x) such that

i. If

uM(x)− uM(yt) > δM

[
VM(σL, σR, σ

my
M ; (R, 2M − yt))− 1

1− δM
uM(x)

]
,

then zt+1(x) solves

uM(x)− uM(zt+1(x)) = δM

[
VM(σL, σR, σ

my
M ; (R, 2M − yt))− 1

1− δM
uM(x)

]
.

ii. If

uM(x)− uM(yt) ≤ δM

[
VM(σL, σR, σ

my
M ; (R, 2M − yt))− 1

1− δM
uM(x)

]
,

then zt+1(x) = yt.

That is, R commits to 2M − zt+1(x) as ‘punishment’ for L being in power with policy x

as opposed to yt+1 and zt+1(x) is the most extreme such punishment that the median voter

supports. For yt such that σR(L, yt) = 2M − yt+1 and for x ∈ (2M − yt+1, 2M − yt],

zt+1(x) ∈ [yt, 2M − x) can be defined symmetrically.

Second, given some σM and ` > M , let r̄(`) > ` be the most extreme commitment by R

in state (L, `) that the median voter supports and that R has the incentive to make. If the

median voter accepts r̄(`), then policy dynamics are ‘freed’ from the policy traps of equilibria

with myopic voters and, after at most one period, the equilibrium path rejoins convergence

path {yt}. For r < M , define ¯̀(r) < r symmetrically. Note that, as with the functions

{zt+1(·)}, r̄(·) and ¯̀(·) are determined only by how parties and the median voter evaluate

convergence paths under (σL, σR, σ
my
M ). Now define strategy σ′R as

σ′L(R, r) =


zt+1(r) if r ∈ (2M − yt+1, 2M − yt] for yt such that σR(L, yt) = 2M − yt+1,

¯̀(r) if r < M and uL(¯̀(r)) + δLVL(σL, σR; (L, ¯̀(r))) ≥ 1
1−δL

uL(r)

σL(R, r) otherwise.
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σ′R can be defined symmetrically. Let σM be a best-response to (σ′L, σ
′
R) in which the

median voter supports the opposition party when indifferent. Given the parties’ strate-

gies, the median voter has no incentive to vote for the incumbent on a convergence path.

Hence, given convergence path policy yt such that σL(R, 2M − yt) = yt+1, we have that

VK(σ′L, σ
′
R, σM ; (R, 2M − yt)) = VK(σL, σR, σ

my
M ; (R, 2M − yt)) for K ∈ {L,R,M}. I do not

describe the median voter’s equilibrium strategy explicitly, but instead show how it responds

to parties’ deviations from the convergence path {yt} to show that parties have no more

incentive to deviate from the convergence path under (σ′L, σ
′
R, σM) than under (σL, σR, σ

my
M ).

Consider state (R, r) with 2M − r ∈ [yt, yt+1) for yt such that σR(L, yt) = 2M − yt+1.

The median voter votes against ` ∈ [yt, zt+1(r)) since the payoff to voting in favour of ` is

uM(`) + δMVM(σ′L, σ
′
R, σM ; (L, yt)) < uM(r) + δMuM(zt+1(r)) + δ2MVM(σ′L, σ

′
R, σM ; (L, yt)),

by the definition of zt+1(r), where the right-hand side is the payoff to voting in favour of r.

The median voter votes against ` ∈ [yt−1, yt) since the payoff to voting in favour of ` is

uM(`) + δMuM(zi(`)) + δ2MVM(σ′L, σ
′
R, σM ; (R, 2M − yt−1))

< uM(r) + δMuM(zt+1(r)) + δ2MVM(σ′L, σ
′
R, σM ; (L, yt)),

since |M − `| > |M − r|, |M − zi(`)| > |M − zt+1(r)| and VM(σ′L, σ
′
R, σM ; (R, 2M − yt−1)) <

VM(σ′L, σ
′
R, σM ; (L, yt)). Similarly, the median voter votes against ` ∈ [yk−1, yk) for yk such

that σL(R, 2M − yk−1) = yk and k ≤ t − 2, and against ` ∈ [yk−1, yk) for yk such that

σR(L, yk−1) = 2M − yk and k ≤ t − 1. That is, in state (R, r), the median voter rejects

all policies ` ∈ [0, zt+1(r)). It may or may not vote for policies ` ∈ (zt+1(r), 1]. A similar

argument shows that in state (R, r) with 2M−r ∈ [yt, yt+1) for yt such that σL(R, 2M−yt) =

yt+1, the median voter rejects any ` ∈ [0, r] and may or may not support ` ∈ (r, 1], but always

supports ` = yt+1.

Now consider parties’ incentives. First, whenever a party’s equilibrium policy is being

accepted, it never gains by committing to policies that are sure to be rejected, since it faces

the same choice in the next election. Consider again state (R, r) with 2M − r ∈ [yt, yt+1)

for yt such that σR(L, yt) = 2M − yt+1. The payoff to party L from policy ` ∈ [zt+1(r), yt+1]

that is accepted by the median voter is

uL(`) + δLuL(2M − yt+1) + δ2LVL(σ′L, σ
′
R, σM ; (R, 2M − yt+1)),

which is decreasing in ` ∈ [yt, yt+1). From above, policies ` ∈ [0, zt+1(r)) cannot be profitably

proposed since they are rejected by the median voter, while policies in (yt+1,M ], if accepted,
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yield to party L at most the payoff it obtains from such deviations under (σL, σR, σ
my
M ).

Hence committing to zt+1(r) is optimal for party L.

Now consider policy yt such that σL(R, 2M − yt) = yt+1 and state (R, r) with 2M − r ∈
[yt, yt+1). The payoff from ` ∈ [2M − r, yt+1), if accepted by the median voter, is given by

uL(`) + δLuL(2M − zt+1(`)) + δ2LVL(σ′L, σ
′
R, σM ; (R, 2M − yt))

≤ uL(`) + δLuL(2M − `) + δ2LVL(σ′L, σ
′
R, σM ; (R, 2M − yt))

< VL(σL, σR, σ
my
M ; (R, 2M − yt)).

The first inequality follows from zt+1(`) ≤ ` and the second since VL(σ′L, σ
′
R, σM ; (R, 2M −

yt)) > 1
1−δ2L

U+
L (`). This shows that yt+1 is L’s preferred winning policy in [yt, yt+1) given

(σ′L, σ
′
R, σM). As the median voter rejects any policy ` ∈ [0, 2M − r), L cannot profitably

deviate to such policies. Finally, deviations to any policies ` ∈ (yt+1,M ] are never profitable

since even if they are accepted by the median voter, L’s payoffs are no higher than under

(σL, σR, σ
my
M ).

It remains to deal with states (R, r) with r < M . By construction, in these states σ′L is

optimal. It needs to be shown that in states (R, r) with r ≥ M , party L does not want to

deviate to some `d > M . Consider state (R, r) with r > M , and suppose party L deviates to

`d > M such that σ′R(L, `d) = r̄(`d) and take {yt} to be the convergence path from (R, r̄(`d)).

It must be that y1 ≥ 2M − r̄(`d). The payoff to party L from `d is given by

uL(`d) + δLuL(r̄(`d)) +
∞∑
t=1

δ2t[uL(yt) + δLuL(2M − yt+1)] < uL(`d) +
δL

1− δL
uL(M)

<
1

1− δL
uL(M).

The first inequality follows by Lemma 1 and the second since `d > M . On the equilibrium

path, VL(σL, σR; (R, r)) ≥ 1
1−δL

uL(M), and hence deviation to `d is not profitable for L.

E Extension: Limited Policy Persistence

E.1 Candidate Selection with No Commitment

Consider a model in which parties select policy-motivated candidates to represent them.

Specifically, suppose that the leaders of parties L and R have ideal policies 0 and 1, respec-

tively. Given any policy x̂ ∈ X, both parties have access to an unlimited pool of potential

candidates that have x̂ as an ideal policy. Party leaders can select candidates to represent
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the party, but cannot replace candidates unless they have lost an election. All candidates’

policy preferences are publicly observed prior to an election, but candidates cannot commit

to implement specific policies. Party leaders and their potential candidates can have different

discount factors, which can reflect differences in time horizons between them.

In this model, a state (I, x̂) includes the identity of the incumbent party along with the

ideal policy of its candidate. A strategy σ̂J for the leaders of party J is now interpreted

as a state-contingent choice of candidate. A (Markov) strategy for a candidate of party

I with ideal policy x̂ is sI(x̂) ∈ X. Myopic voting in this environment requires that, in

all equilibria (σ̂L, σ̂R, sL, sR), the opposition party is elected in state (I, x̂) if and only if

|M − s−I(σ̂−I(I, x̂))| ≤ |M − sI(x̂)|.

Proposition E.1. (σL, σR) is a Markov perfect equilibrium of the model with commitment

if and only if there exists a Markov perfect equilibrium of the model with candidate selection

and no commitment in which parties’ selection strategies (σ̂L, σ̂R) are such that, for all states

(I, x̂), σ̂−I(I, x̂) = σ−I(I, x̂).

Proof. Consider an equilibrium (σ̂L, σ̂R, sL, sR) of the model with candidate selection. Con-

sider a candidate for party I with ideal policy x̂ that implements policy x when in office.

Since voters’ decision to reelect the candidate, as well as the candidate fielded by party

−I, are conditioned only on the state (I, x̂) and not on the policy x, it follows that in

any Markov perfect equilibrium, it must be that sI(x̂) = x̂. Hence, given any equilibrium

(σL, σR) of the model with commitment, the profile (σ̂L, σ̂R, sL, sR) such that, for all states

(I, x̂), σ̂−I(I, x̂) = σ−I(I, x̂) and sI(x̂) = x̂, is an equilibrium of the model with candidate

selection. Conversely, given any equilibrium (σ̂L, σ̂R, sL, sR) of the model with candidate

selection, the profile (σL, σR) such that, for all states (I, x), σ−I(I, x) = σ̂−I(I, x), is an

equilibrium of the model with commitment.

E.2 Term Limits

Suppose that incumbents can hold office for no more than T terms. In this model, a state

(I, x, τ) includes the tenure τ ∈ {1, ..., T} of the current incumbent.

Proposition E.2. (σL, σR) is a Markov perfect equilibrium of the model with no term limit

if and only if there exists a Markov perfect equilibrium (σTL , σ
T
R) of the model with term limit

T ≥ 2 such that, for all states (I, x), σ−I(I, x, 1) = σ−I(I, x).

Proof. Consider an equilibrium (σTL , σ
T
R) of the model with term limit T ≥ 2 and any state

(I, x, τ). Proposition 1 implies that σTL(I, x, T ) = σTR(I, x, T ) = M . However, in all states

(I, x, τ) such that τ < T , Proposition 2 holds. To see this, consider state (R, r, τ) with τ < T
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and r < M . For all τ < T − 1, choosing Out is optimal for party L, as it obtains a payoff

of uL(r) in all such periods. If τ = T − 1, by choosing Out party L obtains a payoff of

uL(r) + δL
1−δ2L

U−L (M), which is party L’s best achievable payoff in that state. Now consider

state (R, r, τ) with τ < T and r > M . Party L can still guarantee itself a payoff of at least
1

1−δ2L
U+
L (2M − r) by committing to policy 2M − r. By the previous argument, party L will

never commit to a winning policy ` > M . Moreover, party L can benefit from staying Out

only if uL(r) + δL
1−δ2L

U+
L (M) ≥ 1

1−δ2L
U+
L (2M − r), which is false. Hence, nontrivial equilibrium

dynamics starting in states (I, x, τ) with τ < T converge to symmetric alternations. Note

that this also implies that if (σTL , σ
T
R) is an equilibrium, then so is (σ′TL, σ

′T
R), which is defined

such that

σ′−I(I, x, τ) =

σT−I(I, x, 1) if τ < T

σT−I(I, x, T ) if τ = T .

Consider any equilibrium (σL, σR) in the model without term limits. In the model with

term limit T , define strategies (σTL , σ
T
R) such that

σT−I(I, x, τ) =

σ−I(I, x) if τ < T

M if τ = T .

Note that we have that σ−I(I, x) = σT−I(I, x, 1), and that (σTL , σ
T
R) is an equilibrium since

(σL, σR) is an equilibrium. Now consider any equilibrium (σTL , σ
T
R) in the model with term

limits. Then, from above, (σ′TL, σ
′T
R) is also an equilibrium. In the model without term limits,

define strategies (σL, σR) such that σ−I(I, x) = σ′−I(I, x, 1). Then (σL, σR) is an equilibrium

since (σTL , σ
T
R) is an equilibrium.

E.3 Costly Policy Adjustments

Proof of Proposition 8. With costly policy adjustment, opposition party −I’s strategy is

conditioned on state (I, x) while the incumbent I’s strategy is conditioned on (I, x, y), where

y is the opposition party’s policy commitment. Define policy `c as the solution to

1

1− δ2L
[U+

L (max{`c, `∗})− U−L (`c)] = c, (3)

if it exists, and 0 otherwise. It must be that `c < M since c > 0. Furthermore, `c is decreasing

in c, limc→0 = M and there exists c̃ such that `c = 0 if and only if c ≥ c̃. Policy rc ∈ (M, 1]

can be defined similarly for party R.
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For the remainder of the proof, suppose that max{`∗, 2M−r∗} = `∗ ≤ `c = max{`c, 2M−
rc}. How to deal with other cases will be easily apparent. To show necessity, first note that

the corresponding arguments in the proof of Proposition 3 still hold and that any long-run

policy outcome ` ≤M must be such that ` ≥ `∗. Suppose now that ` ∈ [`∗, `c) is a long-run

policy outcome. Consider state (R, 2M − `). By Proposition 2, the equilbrium payoff to

party L in this state is 1
1−δ2L

U−L (`). If instead, party L deviates to paying c and adjusting

its policy to winning policy `, its payoff is 1
1−δL

U+
L (`)− c. This deviation is profitable since

` < `c, yielding the desired contradiction.

To show sufficiency, consider the strategies (σcL, σ
my,c
R ) defined as

σcL(R, r) =



`c if r ≥ 2M − `c,

2M − r if r ∈ [M, 2M − `c),

Out if r ∈ [min{rcc,M},M),

max{`c, r} if r < min{rcc,M}.

σcL(L, `, r) =


2M − r if r > 2M − `c,

Out if either r ≤ 2M − `c or r = Out and ` ≤ `cc,

0 if r = Out and ` > `cc

σcR(L, `) =



2M − `c if ` ≤ `c,

2M − ` if ` ∈ (`c,M ],

Out if ` ∈ (M,max{`cc,M}],

max{2M − `c, `} if ` > max{`cc,M}.

σcR(R, r, `) =


2M − ` if ` < `c,

Out if either ` ≥ `c or ` = Out and r ≥ rcc,

1 if ` = Out and r < rcc,

where `cc is defined as the solution to

uL(0)+δLU
−
L (`c)−c =



1 if uL(0) + δLU
−
L (`c)− c ≤ 1

1−δL
uL(1),

1
1−δL

uL(`cc) if uL(0) + δLU
−
L (`c)− c ∈ ( 1

1−δL
uL(1), 1

1−δL
uL(M)],

1
1−δ2L

U+
L (`cc) if uL(0) + δLU

−
L (`c)− c ∈ ( 1

1−δL
uL(M), 1

1−δ2L
U+
L (`c)],

uL(`cc) + 1
1−δ2L

U−L (`c) otherwise.

Define rcc similarly. To simplify the exposition, the strategies have been written in a way
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that a party’s response to action Out by an opponent should also be read to describe its

response to an opponent choosing a losing policy. Consider the optimality of σcL for party L

in state (R, r). Its equilibrium payoff to winning policy ` ∈ [`c,M ] is 1
1−δ2L

U+
L (`). Its payoff

to winning policy ` < `c is uL(2M − `) + 1
1−δ2L

U+
L (`c), which is strictly less than 1

1−δL
uL(M).

Its payoff to winning policy ` > M is uL(`)+ δL
1−δ2L

U+
L (max{2M−`, `c}), which is also strictly

less than 1
1−δL

uL(M). This verifies the optimality of setting policy max{`c, 2M−r} for those

r ∈ [0,M ].

Consider state (R, r) with r < M . Party R responds to (R, r,Out) with either a policy

of 1 or with Out, and Out can be a best response for party L only if σcR(R, r,Out) = Out.

When this is the case, the argument that Out is optimal for party L is as in the proof for

equilibrium (σ`
∗
L , σ

my
R ). If instead σcR(R, r,Out) = 1, the payoff to party L if it stays Out

is uL(1) + δL
1−δL

U+
L (`c), which is strictly less than 1

1−δL
uL(M). The optimality of the policy

prescribed by σcL then follows by the argument of the previous paragraph.

It remains to verify the optimality of σcL in states (L, `, r) for some r. First suppose

that r 6= Out. If r > 2M − `c, then by the arguments from above, if party L decides to

pay the adjustment cost it is optimal to commit to policy `c. Its payoff if it stays Out is

uL(r) + δL
1−δ2L

U+
L (`c) < δL

1−δ2L
U−L (`c). Hence, by the definition of `c, party L prefers to commit

to policy `c. If r ≤ 2M − `c, the worst equilibrium payoff for party L if it stays Out is
1

1−δ2L
U−L (`c). If instead it pays the adjustment cost, the best payoff it can achieve is, by the

arguments from above, δL
1−δ2L

U+
L (`c)− c. Hence, by the definition of `c, party L prefers to stay

Out.

Now suppose that r = {Out}. If party L decides to pay the adjustment cost, it will set

it preferred policy 0. When it is optimal to do this as opposed to staying Out is precisely

what is resolved by the definition of `cc above.

Proof of Corollary 3. The results of the corollary follow from the properties of `c and rc.

F Extension: Office-Motivated Parties

In this section, I allow parties’ preferences to display both policy and office-motivation.

Suppose that party J ’s stage payoff to government policy y is the sum of uJ(y) and an office

benefit b > 0 which party J receives only if it is the party implementing policy y. The model

studied so far has b = 0. I maintain the assumption that ties are broken in favour of the

opposition party. Here, this selection of voting equilibria is not without loss of generality, as

the parties have preferences over the pattern of office holding under policy path {M,M, ...}.
However, having ties broken in favour of the opposition party would result in equilibrium if,

for example, incumbents’ policies were subject to perturbations.
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Proposition F.1. The set of long-run policy outcomes Lb with office benefit b > 0 has the

following properties.

i. limb→0 Lb = [max{`∗, 2M − r∗},M ].

ii. There exits b̄ such that Lb = [max{`∗, 2M − r∗},M ] for all b ≥ b̄.

Proposition F.1 relies on the following result.

Proposition F.2. Consider the model with office benefits b > 0. There exist policies `out ≤
`in < M and M > rin ≥ rout such that either

i. `out < 2M − rin, rout > 2M − `in and policy ` ≤M is a long-run policy outcome if and

only if ` ∈ [max{`∗, 2M − `∗},M ], or

ii. `out ≥ 2M − rin and there exists policy `b ∈ [max{`∗, 2M − r∗},max{max{`∗, 2M −
r∗}, 2M − rin}) such that policy ` ≤M is a long-run policy outcome supported by sym-

metric alternation only if ` ∈ [max{`∗, 2M−r∗}, `b]∪[max{max{`∗, 2M−r∗}, `out},M ].

Furthermore, policy x is a non-trivial long-run policy outcome not supported by sym-

metric alternation only if x ∈ [2M − rin, `out], or

iii. rout ≤ 2M − `in, and the statement is symmetric to ii.

Policy `out is defined such that if `out > 0, then party L is indifferent between never holding

office and having policy `out implemented forever and gaining office every second election and

having policies alternate at (`out, 2M − `out). Policy `in is defined such that if `in > 0, then

party L is indifferent between holding office forever and implementing policy 2M − `in and

holding gaining office every second election and having policies alternate at (`in, 2M − `in).

Policies rout and rin can be defined similarly for party R. Hence, if `out ≥ 2M − rin, there

is scope for a policy ` ∈ [2M − rin, `out] to simultaneously give incentives (a) to party R

to commit to it knowing that party L will fail to contest all future elections and (b) to

opposition party L in state (R, `) not to commit to some winning policy just to gain office.

Case i above covers the case in which no such ‘bargains’ can be sustained. In this case,

since parties understand that any attempt to hold office forever will be thwarted, none is

made and the set of long-run policy outcomes is as though b = 0. Note that cases ii and iii

offer only necessary conditions on the sets of long-run policy outcomes with office benefits.

Partial converses are derived through equilibrium construction in the proof of Proposition

F.1 below.
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Proof of Proposition F.2. Define policy `out ∈ [0,M) as the solution to

1

1− δL
uL(`out) =

1

1− δ2L
[U+

L (max{`out, `∗}) + b], (4)

if it exists or as `out = 0 otherwise. If `out > 0, then party L is indifferent between never

holding office and having policy `out implemented forever and gaining office every second

election and having policies alternate at (`out, 2M − `out). Further define policy `in ∈ [0,M)

as the solution to

1

1− δL
[uL(2M − `in) + b] =

1

1− δ2L
[U+

L (max{`in, `∗}) + b] (5)

if it exits or as `in = 0 otherwise. If `in > 0, then party L is indifferent between holding office

forever and implementing policy 2M − `in and holding gaining office every second election

and having policies alternate at (`in, 2M − `in). Policies rout and rin can be defined similarly

for party R, where r∗ plays the role of `∗. Suppose that `out ∈ [`∗,M). Then, (4) yields that

uL(`out)− uL(2M − `out) = b
δL

. Substituting into (5) yields that

1

1− δL
uL(`out)− 1

1− δ2L
[U+

L (`out) + b]

=
δL

1− δL
[uL(`out)− uL(2M − `out)− δLb]

> 0,

and hence `in ∈ (`out,M). The same can be shown in the cases in which one or both of `out

and `in are smaller than `∗.

Proposition 2, which characterises equilibrium policy paths, no longer obtains if parties

care about holding office, since there can be non-trivial long-run policy outcomes in which

some party is maintained in office forever.

Proposition F.3. Consider some equilibrium (σL, σR) and some state (I, x) along with the

policy path {yt} induced by (σL, σR) starting from (I, x). Then either

i. {yt} has limit points (ˆ̀, 2M − `) for some ` ≤ M , and both σL(R, 2M − ˆ̀) = ˆ̀ and

σR(L, ˆ̀) = 2M − ˆ̀, or

ii. {yt} has a unique limit point x 6= M , and whenever x < M either (I0, y0) = (R, x) or

there exists N > 0 such that σR(L, yN) = x. Furthermore, σL(R, x) ∈ {Out}∪ [x, 2M−
x]c. The statement for x > M is symmetric.
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Proof. Equilibrium policy path {yt} can have no more than two limit points since, as shown

for Proposition 2, all its limit points must be equidistant from the median. First consider

part i. By Markov strategies it follows that parties choose winning policies in each period.

By Lemma 2, in the limit the payoff to party L can be no less than 1
1−δ2L

[U+
L (`) + b]. As

shown for Proposition 2, since (ˆ̀, 2M − `) are limit points of equilibrium policy sequence

{yt}, in the limit the payoff to party L can be no more than 1
1−δ2L

[U+
L (`) + b]. Hence, in the

limit, party L’s payoff is exactly 1
1−δ2L

[U+
L (`)+b], which implies that, given Markov strategies,

σL(R, 2M − ˆ̀) = ˆ̀ and σR(L, ˆ̀) = 2M − ˆ̀.

For part ii, suppose that x < M is the unique limit point of {yt}. Suppose that yt 6= x

for all t. By Markov strategies, parties must choose winning policies in each period. In the

limit, party R’s payoff in state (L, yt) converges to uR(x)
1−δR

+ b
1−δ2R

. Consider a deviation for

party R in state (L, yn) to 2M − yn > M for n sufficiently large. By Lemma 2, party R’s

payoff would be at least U+
R (yn)+ b

1−δ2R
, a contradiction. Hence, there must exist some N ≥ 0

such that yn = x for all n ≥ N . By an argument similar to that above, it must be that for

all n ≥ N , (I, yn) = (R, x), yielding the rest of part ii.

Returning to the proof of Proposition F.2, suppose that `out ≥ 2M − rin. I suppose first

that 2M − rin ≥ `∗ and show that policies in alternation (`, 2M − `) with ` ∈ (2M − rin, `out)
cannot be long-run policy outcomes. Extending the argument to the case in which only `out >

`∗ is straightforward. Towards a contradiction, suppose they were. Consider a deviation by

party R in state (R, 2M−`) to policy `. In state (R, `), the payoff to party L is 1
1−δ2L

[U+
L (`)+b].

Since ` < `out, staying Out forever yields party L a strictly higher payoff and hence it must

be that σL(R, `) = Out. Since ` > 2M − rin, then the deviation to ` is strictly profitable for

party R.

Second, I show that all policies ` /∈ [2M − rin, `out] can never be non-trivial long-run

policy outcomes. The argument above has shown that such policies are not observed in

the long-run as symmetric alternations. By Proposition F.3, if some such policy ` > M is

a non-trivial long-run policy outcome, then there exists an equilibrium (σL, σR), an initial

state (I, x) 6= (R, `) and an induced sequence of policies {yt} such that for some N > 0

σR(L, yN−1) = ` and σL(R, `) ∈ {Out} ∪ [`, 2M − `]c. If ` > `out, then Out (or any losing

policy) is not a best-response for party L in state (R, `). In particular, a deviation to `

yields payoff of at least 1
1−δ2L

[U+
L (`) + b], higher than its equilibrium payoff of uL(`)

1−δL
by (4).

If ` < 2M − rin, then consider the deviation by R in state (L, yN−1) to policy 2M − `.

The payoff to this deviation is at least 1
1−δ2R

[U+
R (`) + b], higher than its equilibrium payoff of

1
1−δR

[uR(`)+b] by R’s version of (5). A similar argument yields the result for those remaining

` < M .
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The final step in the proof is relevant only for cases in which 2M − rin > `out. In that

case, some alternations at policies more extreme than 2M − rin but within `∗ can be ruled

out. Consider map G : [2M − rin, `out]→ [0, 2M − rin] defined as the solution to

1

1− δR
[uR(`) + b] =

1

1− δ2R
[U+

R (G(`)) + b],

if it exists and 0 otherwise. Note that a discontinuity in G can only occur at G(`) = 2M − r∗

By the definition of rin, we have that G(2M − rin) = 2M − rin, G(`) < ` for all ` > 2M − rin

and G is strictly decreasing on [2M − rin, `out] when its value is positive. Define mapping

H : [2M − rin, `out]→ [0, `out] as the solution to

1

1− δL
uL(`) =

1

1− δ2L
[U+

L (H(`)) + b],

if it exists and 0 otherwise. Note that a discontinuity in H can only occur at H(`) = `∗ By

the definition of `out, we have that H(`out) = `out, H(`) < ` for all ` < `out and H is strictly

increasing on [2M − rin, `out] when its value is positive. Since G(2M − rin) > H(2M − rin)

and G(`out) > H(`out), if there can exist at most one value `b ∈ (`∗, 2M − rin) satisfying

G(`b) = H(`b). In all other cases, set `b = `∗.

For those cases in which `b > `∗, it remains to be shown that all policies ` ∈ (`b, 2M−rin)

can never be long-run policy outcomes supported by alternation. Consider some long-run

policy outcome ` ∈ [`∗, 2M − rin) supported by alternation. By Proposition F.3, it must

be that either (i) σL(R, `) = Out for all ` ∈ [2M − rin, `out], or (ii) σL(R, `) ∈ (`,M ]

for all ` ∈ [2M − rin, `out], or (iii) there exists some ˜̀ such that σL(R, ˜̀) = Out and for

any ε > 0, there exists ˆ̀ε such that σL(R, ˆ̀ε) ∈ (ˆ̀ε,M ] and |ˆ̀ε − ˜̀| < ε. In case (i),

consider a deviation by party R in state (L, `) to `out. Party R’s payoff from this deviation

is 1
1−δR

[uR(`out) + b], and hence it is not profitable only if ` ≤ G(`out) < H(`out). In case

(ii), it must be that VL(σL, σR; (R, 2M − rin)) ≥ 1
1−δL

uL(2M − rin). Consider a deviation

by party L in state (R, 2M − `) to σL(R, 2M − rin). This deviation is not profitable only if

` ≤ H(2M − rin) < G(2M − rin). In case (iii), an argument similar to the case (i) above

yields that party R cannot profitably deviate to ˜̀ in state (L, `) only if ` ≤ G(˜̀). Again,

an argument similar to the case (ii) above yields that party L cannot profitably deviate to

σ(R, ˜̀ε) for ε sufficiently small only if ` ≤ H(˜̀). Given the properties of functions G and H

derived above, it follows that min{G(˜̀), H(˜̀)} ≤ `b.

Proof of Proposition F.1. Verifying the claim of Proposition F.1 requires at least a partial

answer to sufficiency in Proposition F.2. First, for the case in which `out > 2M − rin >

G(`out) ≥ `∗ ≥ 2M − r∗, I construct an equilibrium that show that the set of long-run
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policy outcomes supported by alternation contains the set [`∗, G(`out)] ∪ [`out,M ]. Similar

constructions apply to other cases. Consider strategies (σbL, σ
b
R) defined as follows.

σbL(R, r) =



`∗ for r ≥ 2M − `∗

2M − r for r ∈ [M, 2M − `∗)

r for r ∈ (`out,M ]

Out for r ∈ [0, G(`out)] or r = `out

Best of Out or r otherwise

σbR(L, `) =



2M − ` for ` ≤ G(`out)

`out for ` ∈ [G(`out), `out)

2M − ` for ` ∈ [`out,M ]

` for ` ∈ (M, rout]

Out for ` ∈ [max{rout, 2M −G(`out)},max{rout, 2M − `∗}]

Best of Out or ` otherwise

Consider the optimality of σbL for party L facing σbR. For states (R, r) with r ∈ [M, 2M −
`out] ∪ (2M − G(`out), 1], the argument follows as in the case of equilibrium (σ`

∗
L , σ

my
R ). For

states (R, r) with r ∈ [2M − `out, 2M − G(`out)], the best response of party L must either

be 2M − r or some policy ` ∈ (`out, r]. Party L’s payoff to 2M − r is uL(2M − r) + b +
δL

1−δ2L
[U+

L (`out) + b], which is higher than δL
1−δ2L

[U+
L (`) + b], the payoff to ` ∈ (`out,M ]. Since

2M − `in < 2M − `out ≤ rin < rout, party R responds to any ` ∈ (M, 2M − `in] with policy

`, and hence party L has no incentive to choose such a policy. Similarly, party L has no

incentive to choose any policy ` ∈ (2M − `in, r].
Consider state (R, r) with r ∈ [0, G(`out)]. The equilibrium payoff to party L if it chooses

a winning policy is 1
1−δ2L

[U+
L (r) + b] if r ≥ `∗ and 1

1−δ2L
[U+

L (`∗) + b]} otherwise. Since r < `out,

staying Out is optimal. Similarly, for state (R, r) with r ∈ (`out,M ], the equilibrium payoff

to party L is 1
1−δ2L

[U+
L (r) + b], and hence policy r is optimal. For those r ∈ [G(`out), `out), it

may be optimal for party L to choose winning policy r even if r < `out since its equilibrium

payoff to policy r is given by uL(r) + b+ δL
1−δ2L

[U+
L (G(`out)) + b], which is strictly larger than

1
1−δ2L

[U+
L (r) + b]. Which of Out or r is optimal is simple, if tedious, to verify. Note that if

r = `out, party L is indifferent between staying Out and choosing winning policy `out, which

yields payoff δL
1−δ2L

[U+
L (`out) + b].

Now consider the optimality of σbR for party R facing σbL. Again, for states (L, `) with

` ∈ [0, G(`out)) ∪ (`out,M ], the argument follows as in the case of equilibrium (σ`
∗
L , σ

my
R ).
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For states (L, `) with ` ∈ [G(`out), `out), party R’s equilibrium payoff is 1
1−δR

[uR(`out) + b],

which since `out > 2M − rin is strictly greater than 1
1−δ2R

[U+
R (`out) + b], the best payoff it can

achieve by choosing any winning policy r for which σbL(R, r) 6= Out. Furthermore, party R’s

preferred winning policy r for which σbL(R, r) = Out is `out, its equilibrium choice.

For those states (L, `) with ` ∈ (M, rout]∪ [max{rout, 2M −G(`out)},max{rout, 2M − `∗}],
the argument is similar to that for party L. That is, party R’s equilibrium payoff to winning

strategy ` is 1
1−δ2R

[U+
R (`) + b] and the definition of policy rout can be applied directly to find

which of ` or Out is optimal. Again, for those states (L, `) with ` > rout for which party R’s

payoff to winning policy ` exceeds 1
1−δ2R

[U+
R (`) + b], a simple verification determines which of

` or Out is optimal.

Second, suppose that both 2M − rin ≥ `out and `in ≥ 2M − rout. Then a simple modifi-

cation of equilibrium (σ`
∗
L , σ

my
R ) shows that the bound max{`∗, 2M − r∗} on long-run policy

outcomes is tight even with office benefits. Consider strategies (σ`
∗,b
L , σmy,bR ), defined as fol-

lows.

σ`
∗,b
L (R, r) =



`∗ for r ≥ 2M − `∗

2M − r for r ∈ [M, 2M − `∗)

r for r ∈ (`out,M ]

Out for r ∈ [0, `out]

σmy,bR (L, `) =


2M − ` for ` ∈ [0,M ]

` for ` ∈ (M, rout)

Out for ` ∈ [rout, 1]

The verification that (σ`
∗,b
L , σmy,bR ) constitutes an equilibrium mostly follows from the argu-

ments showing that (σ`
∗
L , σ

my
R ) constitutes an equilibrium in the absence of office benefits. It

remains only to verify that (i) staying Out is optimal for the parties when their strategies

call for it and that (ii) no party has an incentive to commit to a policy to which its opponent

responds to by staying Out. It is straightforward to see that (i) and (ii) follow from the

definitions of (`out, rout) and (`in, rin), respectively.

The two equilibrium constructions from above show that for any b > 0, either [`∗,M ] = Lb

or `∗ < `out and [`out,M ] ⊆ Lb. Results i and ii Proposition F.1 then follow from the

properties of `out (or rout in comparable cases).
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G Extension: Median Uncertainty and Incumbency

Advantage

In this section, I assume that there is uncertainty about the location of the median policy

which stems from an incumbency bias. I consider the case in which this uncertainty becomes

arbitrarily small to investigate the robustness of my results in the model with perfect infor-

mation. Specifically, fix ε ∈ (0,M ] and consider a state (I, x). In this election, the median

policy M(I, x) is such that, with probability q,

M(I, x) = M,

while with probability (1− q),

M(I, x) =


M + ε if x > M + 2ε

M − ε if x < M − 2ε

M if x ∈ [M − 2ε,M + 2ε].

That is, with probability 1−q, the median policy is pulled towards the policy championed by

the incumbent. Note that in any state (I, x), we have |M(I, x)−M | ≤ |x−M |. That is, the

median policy is never more extreme than the incumbent’s policy. Furthermore, opposition

parties never need to champion policies on the opposite side of M in order to guarantee

that they win an election. For example, in any state (R, r) with r > M + 2ε, any policy

` ∈ [2(M + ε) − r,M ] for party L wins with probability 1, while if r ∈ [M,M + 2ε], policy

M wins with probability 1. The incumbency advantage ensures that, as in previous sections,

a long-run policy outcome consists of an alternation at symmetric policies. However, with

median uncertainty any such alternation is probabilistic, with the incumbent retaining power

with probability 1− q.

Proposition G.1. The set of long-run policy outcomes Lε with probabilistic incumbency

advantage ε > 0 is such that limε→0 Lε = {M}.

Proof. A key feature of this parametrisation of incubency advantage is that, as in my main

model, sets of winning policies cannot expand over time. Specifically, consider state (I, x),

a profile (σL, σR) and the (random) state path {(I t, xt)}∞t=1 induced by (σL, σR) starting

from (I, x). Then if policy y wins with probability 0 in state (I, x), it must be that, for all

t ≥ 1, policy y also wins with probability 0 in state (I t, xt). To see this, note that, given

any t, if xt < M − 2ε, policies in [xt, 2(M − ε) − xt] win with probability 1, policies in

(2(M − ε)− xt, 2M − xt] win with probability q, and all other policies win with probability
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0. If instead xt ∈ (M − 2ε,M ], then policies in [xt, 2M − xt] win with probability 1 and all

other policies win with probability 0. Similarly, if xt > M , only policies in [2M − xt, xt] win

with positive probability. Hence, given any t′ > t, incumbent I t
′

must champion a policy no

more extreme (relative to M) than xt.

This last fact simplifies the characterisation of long-run policy outcomes when the median

location is unknown. Fix any policy r ≥ M along with an equilibrium (σεL, σ
ε
R). Note that

since party L wins with probability 0 in state (R, r) if σεL(R, r) < 2M − r, an argument

similar to that in Proposition 2 implies that σεL(R, r) ≥ 2M − r. Similarly, it must be that

σεR(L, 2M − r) ≤ r. Furthermore, we also have that σεL(R, r) ≤ M . This follows by an

argument as in Proposition 2, since for any ` > M , σεR(L, `) = Out, where this last fact

follows since from state (L, `), the feasible policy path preferred by party R is {`, `, ...},
which it can achieve only by staying Out. Hence, again by an argument as in Proposition

2, policy r ≥ M is a (non-trivial) long-run policy outcome under (σεL, σ
ε
R) if and only if

σεL(R, r) = 2M − r and σεR(L, 2M − r) = r.

For the remainder of the proof, assume that policy r ≥ M + 2ε is a long-run policy

outcome under (σεL, σ
ε
R). In that case, since

VL(σεL, σ
ε
R; (R, r)) = qu`(2M − r) + (1− q)u`(r) + δL

[
qVL(σεL, σ

ε
R; (L, 2M − r))

+ (1 − q)VL(σεL, σ
ε
R; (R, r))

]
,

and

VL(σεL, σ
ε
R; (L, 2M−r)) = (1−q)u`(2M−r)+qu`(r)+δL

[
(1−q)VL(σεL, σ

ε
R; (L, 2M−r))

+ qVL(σεL, σ
ε
R; (R, r))

]
,

it can be computed that

VL(σεL, σ
ε
R; (R, r)) =

1

[1− δL(1− q)]2 − δ2Lq2
[quL(2M − r) + [(1− q)(1− δL) + δLq]uL(r)] .

Consider an alternative strategy σdL for party L which is such that

σdL(R, r) =


2(M + ε)− r if r ≥M + 2ε

M if r ∈ [M,M + 2ε)

Out if r < M ,

and let {xt}∞t=1 be the (random) policy path induced by σdL starting from (R, r). Further,
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recursively define a sequence of policies {x̃t}∞t=1 such that

x̃1 = 2(M + ε)− r,

x̃t = σεR(L, xt−1) for t > 1 even,

x̃t =

2(M + ε)− xt−1 if xt−1 ≥M + 2ε

M if xt−1 ∈ [M,M + 2ε).
for t > 1 odd.

Note that, by construction, x̃t ≤ M for all t > 1 odd. Hence, it must be that, for any

t > 1 even, we have that x̃t ≥ M , since σεR(L, `) ≥ M for all ` ≤ M . The sequence {x̃t}
corresponds to the policy path induced by the profile (σdL, σ

ε
R) from (R, r) that would result

if party R won with probability 1 whenever it implemented an equilibrium response to a

policy of party L under σdL in state (L, `) with ` ≤ M . Let V d,ε
L be the payoff to party L

from the profle (σdL, σ
ε
R) in state (R, r). We have that

V d,ε
L = uL(2(M + ε)− r) + E

∑
t>1

δt−1L (xt)

≥ uL(2(M + ε)− r) +
∑

t>1, t even

δt−1L

[
uL(x̃t) + δLuL(x̃t+1)

]
= uL(2(M + ε)− r) +

∑
t>1, t even

δt−1L

[
uL(x̃t) + δLuL(min{2(M + ε)− x̃t,M})

]
≥ 1

1− δ2L
[uL(2(M + ε)− r) + δLuL(r)] ,

where the first inequality follows since, for t even, x̃t ≥ x̃t−1, and the final inequality follows

by the concavity of uL since, for all t even, M ≤ x̃t ≤ r. Finally, since

lim
ε→0

[
VL(σεL, σ

ε
R; (R, r))− V d,ε

L

]
≤ VL(σεL, σ

ε
R; (R, r))− 1

1− δ2L
[uL(2M − r) + δLuL(r)]

=
(1− q)(1− δL)2

(1− δ2L) [[1− δL(1− q)]2 − δ2Lq2]
[uL(r)− uL(2M − r)]

< 0,

this implies that r ≥M+2ε is a long run policy outcome under (σεL, σ
ε
R) only if ε is sufficiently

large, establishing the claim of Proposition G.1.

The next result relies on equilibrium construction, which is challenging with median

uncertainty. To simplify the arguments involved, I assume that, as in Section 5.3, parties have

office benefit b > 0. Further, I assume that b is large, so that in equilibrium, opposition parties

always commit to policies that win with probability 1 (such a policy is always available, e.g.,
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committing to the incumbent’s policy). This allows a simple resolution of parties’ trade-off

between policy and winning probability.

Proposition G.2. Consider the model with uncertain incumbency advantage ε > 0 and

suppose that both parties have large office benefit. Then given any policies ˆ̀∈ (max{`∗, 2M−
r∗},M ] and r0 > 2M−max{`∗, 2M−r∗}, and any T > 0, there exist ε̂ > 0 and an equilibrium

(σε̂L, σ
ε̂
R) such that, if {xt} is the sequence of policies induced by (σε̂L, σ

ε̂
R) starting from (R, r0),

then, for all t ≤ T , |M − xt| ≥M − ˆ̀.

In words, given any policy ˆ̀ more moderate than the most extreme long-run policy

outcome from the model with perfect information, level of uncertainty about the median

can be chosen small enough to ensure that there exists an equilibrium under which, starting

from a policy more extreme than ˆ̀, it takes an arbitrarily long time for policy dynamics to

become more moderate than ˆ̀.

Proof of Proposition G.2. Given ` ∈ [0,M ], define the sequence of policies {x̃t`}∞t=0 recursively

such that

x̃0` = `

x̃t` =

2(M − ε)− x̃t−1` if x̃t−1` ∈ [0,M − 2ε)

2M − x̃t−1` if x̃t−1` ∈ [M − 2ε,M ]
if t > 0 is odd

x̃t` =

2(M + ε)− x̃t−1` if x̃t−1` ∈ (M + 2ε, 1]

2M − x̃t−1` if x̃t−1` ∈ [M,M + 2ε]
if t > 0 is even

Note that, given any ε > 0, the sequence of policies {x̃t`} corresponding to ` ∈ [0,M ]

reaches policy x such that |M − x| ≤ 2ε for the first time at some finite T ε` ≥ 0, with

|M − x̃t`| = |M − x̃
T ε`
` | for all t ≥ T ε` . Also, if T ε` is even, we have that x̃

T ε`
` ≤ M , while if T ε`

is odd, we have that x̃
T ε`
` ≥M Given ` ∈ [0,M ], let ŨL(`) be the payoff to party L from the

sequence of policies {x̃t`}. That is,

ŨL(`) =
∞∑
t=0

δtuL(x̃t`)

=



∑T ε`−2
t=0, t even δ

t [uL(x̃t`) + δLuL(2(M − ε)− x̃t`)] +
δ
Tε`
L

1−δ2L

[
uL(x̃

T ε`
` ) + δLuL(2M − x̃T

ε
`
` )
]

if T ε` ≥ 2 is even∑T ε`−1
t=0, t even δ

t [uL(x̃t`) + δLuL(2(M − ε)− x̃t`)] +
δ
Tε`+1

L

1−δ2L

[
uL(2M − x̃T

ε
`
` ) + δLuL(x̃

T ε`
` )
]

if T ε` ≥ 1 is odd.
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Given that ŨL is continuous on [0,M ], let `∗,ε = max{arg max`∈[0,M ] Ũ(`)} be its most

moderate maximiser. Note that limε→0 `
∗,ε = `∗. Similarly, we can define r∗,ε ∈ [M, 1].

Suppose that `∗,ε ≥ 2M − r∗,ε (a similar argument applies in the opposite case) and define

strategy profile (σεL, σ
ε
R) such that

σεL(R, r) =



`∗,ε if r ∈ [0, `∗,ε] ∪ [2(M + ε)− `∗,ε, 1]

2(M + ε)− r if r ∈ [M + 2ε, 2(M + ε)− `∗,ε)

2M − r if r ∈ [M,M + 2ε)

r if r ∈ (`∗,ε,M),

σεR(L, `) =


2(M − ε)− ` if ` ∈ [0,M − 2ε]

2M − ` if ` ∈ (M − 2ε,M ]

` if ` ∈ (M, 1].

This strategy profile is meant to mimic the key properties of the profile (σ∗L, σ
my
R ) from

Proposition 3, but adjusted to incumbency advantage and high office benefit: party L takes

policy dynamics to its preferred ‘ε-alternation’ if possible, and initiates the most extreme

such alternation that wins with probability 1 when not possible.

Consider state (R, r). If ε is small enough that `∗,ε < M−2ε, it follows from arguments as

in Proposition 3 that σεL is optimal for party L against σεR if r ∈ [M,M +2ε]. Similarly, since

office benefits are high, party L always champions a policy that wins with probability 1, and

it can be verified that σεL is optimal for party L against σεR if r ∈ [0,M). Now suppose that

r ∈ [M + 2ε, 1], and note that VL(σεL, σ
ε
R; (R, r)) = ŨL(2(M + ε) − r). Since office benefits

are high and only policies ` ∈ [2(M + ε) − r, r] allow party L to win with probability 1,

championing policy ` ≤ 2(M + ε)− r is never optimal for party L. Since no policy ` ∈ (M, r]

is optimal for party L, under profile (σεL, σ
ε
R), only policies ` ∈ [2(M + ε) − r,M ] can be

optimal for party L. Hence, a verification argument very similar to that of Proposition 3

establishes that (σεL, σ
ε
R) is an equilibrium as long as ŨL is decreasing on [`∗,ε,M−2ε]. While

it is intuitive that ŨL should be single-peaked around `∗,ε, establishing this is not trivial, in

particular since ŨL is not everywhere differentiable. The key property that I will exploit is

that non-differentiabilities in ŨL(`) are driven by terms in the tail of sequence {x̃t`}, so that

they can safely be ignored when ε is small.

Let `m,ε be such that

`m,ε = arg max
`∈[0,M−2ε]

[uL(`) + δLuL(2(M − ε)− `)] .
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Note that `m,ε is well-defined since uL is strictly concave, which also implies that, given any

` ∈ (`m,ε,M − 2ε], we have that

uL(`) + δLuL(2(M − ε)− `) < uL(`m,ε) + δLuL(2(M − ε)− `m,ε),

and hence that `∗,ε ≤ `m,ε. Also, it must be that ŨL is decreasing on [`m,ε,M − 2ε], so it only

needs to be established that ŨL is decreasing on [`∗,ε, `m,ε]. Finally, note that `m,ε < `∗ < M ,

and that limε→0 `
m,ε = `∗.

For fixed ε > 0, T ε` is a piecewise constant, decreasing function of ` ∈ [0,M − 2ε], and

Ũ ε
L is differentiable at all ` at which T ε` is continuous. If T ε` is not continuous at ˜̀, then

lim`↗˜̀T ε` = T ε˜̀ + 1. Furthermore, note that if T ε˜̀ is odd, it must be that x̃
T ε`−1
` converges to

M + 2ε from above as ` ↗ ˜̀, while if T ε˜̀ is even, x̃
T ε`−1
` converges to M − 2ε from below as

`↗ ˜̀. It follows that

∂

∂+`
ŨL(˜̀) =


∂
∂−`

ŨL(˜̀)− δ
Tε˜̀+1

L

1−δ2L
[u′L(M)(1 + δL)− [u′L(M − 2ε) + δLu

′
L(M + 2ε)]] if T ε˜̀ is odd

∂
∂−`

ŨL(˜̀)− δ
Tε˜̀+1

L

1−δ2L
[u′L(M)(1 + δL)− [u′L(M + 2ε) + δLu

′
L(M − 2ε)]] if T ε˜̀ is even.

Hence, by the strict concavity of uL, we have that ∂
∂+`

ŨL(˜̀) < ∂
∂−`

ŨL(˜̀) if T ε˜̀ is even, while, if

ε is small enough that `∗,ε < M−2ε, we have that ∂
∂+`

ŨL(˜̀) > ∂
∂−`

ŨL(˜̀) if T ε˜̀ is odd. Note that

there must exist ˜̀> `∗,ε such that, for all ` ∈ [`∗,ε, ˜̀], ∂
∂+`

ŨL(`) < 0, and let ∂
∂+`

ŨL(˜̀) = η < 0.

To see this, first suppose that T ε` is continuous at `∗,ε, so that ∂
∂`
ŨL(`∗,ε) = 0 and, since uL is

strictly concave, ∂2

∂`2
ŨL(`∗,ε) < 0. Second, suppose that T ε` is not continuous at `∗,ε, so that

∂
∂+`

ŨL(`∗,ε) ≤ 0. But then it also follows from the strict concavity of uL and the piecewise

continuity of T ε` that ∂2

∂+`2
ŨL(`∗,ε) < 0, again yielding the desired result.

For fixed `, T ε` is a decreasing function of ε. Fix ε̃ such that, for all ε ≤ ε̃,

δ
T ε
`m,ε

L

(1− δL)(1− δ2L)
[u′L(M − 2ε) + δLu

′
L(M + 2ε)− u′L(M)(1 + δL)] < −η,

and consider any ` ∈ [˜̀, `m,ε]. First, suppose that T ε˜̀ = T ε` . Then from above we have that

∂

∂+`
ŨL(`) <

∂

∂+`
ŨL(˜̀)

= η < 0.
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Second, suppose that T ε˜̀ − T ε` ≥ 1. Then

∂

∂+`
ŨL(`) ≤ ∂

∂+`
ŨL(˜̀) + δ

T ε`
L

T ε˜̀−T
ε
`−1∑

t=0

δtL
1− δ2L

[u′L(M − 2ε) + δLu
′
L(M + 2ε)− u′L(M)(1 + δL)]

≤ ∂

∂+`
ŨL(˜̀) +

δ
T ε
`m,ε

L

(1− δL)(1− δ2L)
[u′L(M − 2ε) + δLu

′
L(M + 2ε)− u′L(M)(1 + δL)]

<
∂

∂+`
ŨL(˜̀)− η

= 0,

where the second inequality follows since T ε` ≥ T ε`m,ε . This establishes the claim that, for

ε ≤ ε̃, ŨL is decreasing on [`∗,ε,M − 2ε].

To complete the proof of Proposition G.2, suppose that `∗ ≥ 2M − r∗ and fix any policies

r0 ∈ (2M − `∗, 1] and ˆ̀∈ (`∗,M ] as well as T > 0. Note that under (σεL, σ
ε
R), we have that

σεL(R, r0) = `∗,ε. Since limε→0 `
∗,ε = `∗ and limε→0 T

ε
`∗,ε =∞, there exists ε̂ such that, for all

ε ≤ ε̂, |xt`∗,ε −M | < M − ˆ̀ for all t ≤ T , as desired.
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