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Abstract 

Fine temporal patterns of firing in much of the brain are highly irregular. In some 

circuits, the precise pattern of irregularity contains information beyond that contained in 

mean firing rates. However, the capacity of neural circuits to use this additional 

information for computational purposes is not well understood. Here we employ 

computational methods to show that an ensemble of neurons firing at a constant mean 

rate can induce arbitrarily chosen temporal current patterns in post-synaptic cells. If the 

pre-synaptic neurons fire with nearly uniform inter-spike intervals, then current patterns 

are sensitive to variations in spike timing. But irregular, Poisson-like firing can drive 

current patterns robustly, even if spike timing varies by tens of milliseconds from trial 

to trial. Notably, irregular firing patterns can drive useful patterns of current even if they 

are so variable that several hundred repeated experimental trials would be needed to 

distinguish them from random firing. Together, these results describe an unrestrictive 

set of conditions in which post-synaptic cells might exploit virtually any information 

contained in spike timing. We speculate as to how this capability may underlie an 

extension of population coding to the temporal domain.  
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Past theoretical and experimental work has shown how inter-neuronal communication 

through firing rates supports a wide range of computational processes. In some systems, 

additional information is contained in the precise timing of action potentials (e.g. 

Optican & Richmond, 1987; Wright et al., 2002). Information- theoretic studies have 

extensively characterized the amount of information carried by action potential timing 

in sensory systems (e.g. Rieke et al., 1997). Although less widely studied, timing also 

appears to be important in motor and frontal areas (Abeles et al., 1993; Riehle et al., 

1997). However, the functional relevance of information contained in spike timing 

depends entirely on what post-synaptic neurons can do with this information. This has 

motivated us to focus in this study on the effects that timing-based information can have 

on post-synaptic cells.  

It is well-established that action potential timing plays a role in synaptic plasticity (see 

reviews by Kepecs et al., 2002; Dan & Poo, 2004), but spike timing can also underlie 

computational processes. For example, activity in a neuron can depend on the degree of 

synchrony between the pre-synaptic neurons that converge onto it (Abeles, 1982; Softky 

& Koch, 1993; Singer, 1999; Salinas & Sejnowski, 2000). This phenomenon underlies 

perception of the horizontal location of low-frequency sound sources (Yin & Chan, 

1990; Brand et al., 2002), and has been suggested to play a significant role in high-level 

visual perception (although see Shadlen & Movshon, 1999; Dakin & Bex, 2002) and the 

recognition of odours (MacLeod et al., 1998; Brody & Hopfield, 2003). Notably, 

synchrony-based computations can also be performed with asynchronously generated 

spikes, provided propagation times differ so that spikes arrive synchronously at their 

target (Hopfield, 1995; Natschläger & Ruf, 1997; Iz hikevich, 2006).  



 

Less is known about how the timing of action potentials can affect computational 

processes in the absence of synchrony.  But a number of cases demonstrate that the 

effects can be substantial. For example, information about tactile stimuli that are applied 

to human fingertips is encoded in the relative timing of the first spikes from different 

sensory neurons (Johansson & Birznieks, 2004). This information can be extracted 

effectively by a projection with unequal excitatory synaptic weights and parallel 

inhibition (Thorpe et al., 2001). Similarly, information contained in the timing of 

consecutive spikes (in one neuron) can be extracted by certain types of synapses 

(Natschläger & Maass, 2001), neurons (Segundo et al., 1963), or specific circuits 

(Ahissar, 1998; Buonomano, 2000; Knüsel et al., 2004). Also, some learning rules can 

lead simple neuron models to support a wide variety of mappings between incoming 

spike patterns and output (e.g. Legenstein et al., 2005; Gütig & Sompolinsky, 2006). 

These examples illustrate that in a variety of situations, post-synaptic neurons may read 

out information contained in spike timing without relying on synchrony. However, the 

relevance of non-synchronous spike timing to the operation of cortical circuits in 

general remains uncertain.  

In particular, it is not yet clear whether non-specialized neurons can use 

information encoded in arbitrary spike patterns in a flexible manner, i.e. to compute 

arbitrary functions of the encoded signals. In this direction, Legenstein et al. (2005) 

have shown that spike-timing-dependent plasticity (STDP) can lead to input/output 

mappings that correspond to arbitrarily chosen sets of synaptic weights. However, this 

does not clarify whether mappings to arbitrarily chosen output spike patterns are 

possible. As we discuss below, the latter question has important implications for the 

interpretation of electrophysiological data.  Therefore, we address here the question of 

whether there exist sets of synaptic weights that will transform arbitrarily selected 



 

patterns of spike timing into arbitrarily selected temporal patterns of current in a post-

synaptic neuron model.  

To answer this question, we use a conductance model to characterize synaptic 

currents, adjusting weights so that synaptically-induced current at the soma optimally 

approximates pre-selected target patterns. We show that commonly observed types of 

firing patterns can drive a wide variety of current patterns in post-synaptic cells, 

regardless of whether their mean rates vary over time. This remains true even if spike 

times vary randomly with a standard deviation of more than 10ms. In some cases 

effective post-synaptic currents can be driven by firing patterns that are so variable that 

the probability of distinguishing them from random firing is remote. Thus, in very 

general circumstances, the information contained in patterns of spike timing can be read 

out as arbitrary patterns of current in a post-synaptic cell. We conclude by suggesting 

how this phenomenon may underlie a versatile population-temporal coding scheme.  

Materials and Methods  

Simulations were performed using MATLABfi  code that is available from the authors’ 

web site (http://compneuro.uwaterloo.ca/).  

Approximation of Current Patterns  

The key procedure in this study is the assessment of how well given firing patterns can 

induce pre-selected patterns of current in a post-synaptic cell model. The target current 

was never induced exactly, but for a given pre-synaptic firing pattern approximations of 

varying quality could be obtained by adjusting synaptic weights. We were interested in 

the best approximations that could be obtained for each firing pattern/target current pair.  



 

Target currents were approximated by a linear combination of the post-synaptic 

currents (PSCs) that were induced at each synapse in a model cell. The optimal synaptic 

weights for approximating a given target current were found by adapting a method for 

decoding neural representations of scalars (Eliasmith & Anderson, 2003). The following 

error function was minimized (using the Moore-Penrose pseudoinverse) with respect to 

synaptic weights w:  
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where E=error, I(t) is the current pattern to be approximated, wi is the weight of 

the ith synapse, Ii is the unweighted PSC pattern at each synapse, and t is time. In cases 

where firing patterns varied from trial to trial due to noise, the above integral was 

evaluated over 32 repeated trials to find optimal weights, and performance was then 

evaluated as the average MSE over 5 additional trials. Accuracy improved with greater 

numbers of trials, but improved little with 64 as opposed to 32 trials. 

The model of current dynamics at each synapse was adapted from a model of 

AMPA receptors (Destexhe et al., 1998). This model determined the temporal shape of 

the current at each synapse, while the optimal synaptic weights determined the absolute 

scale. The results of this study were not sensitive to alternate PSC models, different 

time constants of current decay, or diverse time constants at different synapses. We 

adopted the common simplifying assumption that synaptic currents combine linearly at 

the soma (e.g. Gütig & Sompolinsky, 2006; Izhikevic h, 2006). This is a reasonable 

approximation of some, but certainly not all, cases of synaptic integration, depending on 

factors such as intrinsic currents and the spatial distribution of synapses (e.g. Poirazi et 

al., 2003). Linear combination was achieved by holding membrane potential (at the 



 

synapse) at -65mV, a constant far from the reversal potential. By summing 

conductances instead of currents, the analysis can be generalized to any case in which 

there is a monotonic relationship between conductance and current, but this additional 

complexity is avoided here.  

We focused on target current patterns in the 0-5Hz band, which approximates the 

range of frequencies over which neural firing rates change in many circuits. For 

example, muscle activation patterns in humans (which are rate-coded) consist mainly of 

frequencies under 5Hz. A selection of band-limited target currents was generated by 

assigning random coefficients to different frequency components, and calculating the 

inverse Fast Fourier Transforms.  

Pre-synaptic Firing Patterns  

Pre-synaptic firing patterns were obtained in two different ways. First, an initial study 

was performed with firing patterns produced by a cortical network model. Second, 

synthetic spike trains with desired statistical features were generated by drawing ISIs 

from appropriate probability distributions. These methods are described in detail below.  

Network Simulation 

The cortical network model (Izhikevich, 2003) consisted of 200 fast-spiking inhibitory, 

and 800 excitatory neurons, the latter mainly adapting with some bursting neurons. In 

some simulations, the coefficient of variation (CV; i.e. the standard deviation divided by 

the mean) of inter-spike intervals (within the spike train of each neuron) was increased. 

CV was increased by shifting the excitatory neuron distribution to favor bursting 

neurons, and decreasing excitatory coupling by 40%.   

Synthetic Spike Trains  



 

Synthetic spike trains were used to explore in detail how the results obtained from the 

cortical network model related to its patterns of firing. Inter-spike intervals (ISIs) for 

synthetic spike trains were drawn from 3 types of probability distributions: Gaussian 

centred on a mean firing rate (repetitive spiking); a shifted exponential distribution with 

zero probability between 0-2 ms (Poisson-like pattern with refractory period); and a 

bimodal distribution consisting of the sum of two Gaussians, chosen so as to obtain a 

specified mean rate and CV=2 (irregular bursting). To obtain spike trains with CV<1, 

the Gaussian and exponential distributions were combined in a weighted average. Spike 

trains with CV between 1 and 2 were obtained by averaging the exponential and 

bimodal distributions.  

Since each synthetic firing pattern was generated from a single ISI distribution, 

we refer to these patterns as having constant firing rates. Since the mean rates do not 

change over time, ISI ordering makes up all of the information content of these firing 

patterns. This means that (for example) the Poisson patterns in this study are not treated 

as Poisson noise, but as information with Poisson statistics. Noise was introduced 

separately, either as spike time jitter, or in the form of additional spikes that were 

introduced at random from trial to trial. 

It was hypothesized that firing time correlations across different neurons might 

also affect performance, separately from the effects of the temporal regularity of firing 

patterns. Spike trains with different levels of pairwise correlation were produced in two 

ways:  

Method A: Spikes were distributed in a Gaussian pattern (SD=3ms) around 

Poisson-distributed correlation times (Benucci et al., 2004). The degree of correlation 

was varied by changing the rate of correlation times relative to the firing rate. For 



 

example, when the rates were similar, each spike train contained a spike at almost every 

correlation time, and pairwise correlations were very high. Correlations were low when 

the firing rate was much lower than the rate of correlation times.  

Method B: Poisson firing rates R in each spike train were varied over time 

according to the template function: R = A max(0, sin(2πBt) � C), where B  = 10, 22, or 

55Hz, t is time, C is a threshold between. -2 and 0.9, and A is a constant that normalizes 

the template to produce the desired mean firing rate. At higher thresholds, firing only 

occurred at peaks of the sine wave, resulting in high correlations. 

As an index of pairwise correlation, we report the peak cross correlation R = (RAB 

� N ANB/N) / [(NA � N A
2/N)(NB � N B

2/N)]1/2, where RAB is the number of coincidences 

in each 1ms bin, NA and NB are the numbers of times that cells A and B fire, and N is 

the number of bins (e.g. Tomita & Eggermont, 2005). These methods result in similar 

degrees of correlation between different pairs in an ensemble. This is a simplification, in 

that there is typically substantial variation between pairwise correlations in a real neural 

ensemble.  

Statistical Power Analyses  

Statistical power analyses were performed in order to determine the numbers of 

experimental trials that would be needed to detect the subtlest firing patterns that could 

drive reproducible activity in post-synaptic targets (see details in Appendix). These 

analyses apply to experiments that consist of repeated recordings of a single excitatory 

cell from a population with Poisson firing statistics. Cells that are post-synaptic to this 

population may also receive inputs from other populations, but the net effect of other 

inputs is assumed to be nearly constant.   



 

Results 

Cortical Network Simulation 

A simulated network of 1000 irregularly firing cortical neurons (Izhikevich, 2003) was 

able to generate post-synaptic currents that closely approximated a wide variety of 

target patterns. Figure 1 shows current patterns generated simultaneously by this 

network in three different post-synaptic cell models, which differ only in terms of 

synaptic weights. The current pattern in the first cell is a smoothed and scaled version of 

the network�s mean firing rate. This is the type of current pattern that would emerge 

with uniform or random synaptic weights, so it is not surprising that this target pattern 

can be approximated very closely when synaptic weights are optimized specifically for 

this purpose. The current pattern in the second cell is an arbitrarily chosen square pulse. 

In contrast with the current pattern of the first cell, this current pattern is not related to 

the network�s firing rate, or to any other time-varying statistic of the network�s activity. 

However, with appropriately chosen synaptic weights, this pattern is also approximated 

accurately. The current pattern in the third cell consists of randomly selected frequency 

components in the 0-5Hz band. Like the square pulse, it bears no obvious relationship 

with the network�s firing pattern, but it is also well approximated. Somatic current in 

each of these cells deviates less than 1% from the target, in the mean-squared sense. 

These examples show that a given pattern of firing may drive an extremely wide variety 

of post-synaptic currents given appropriately chosen synaptic weights.  

Firing Pattern Regularity 

This basic result does not address how statistical features of a population firing pattern 

might constrain the current that it can induce in a post-synaptic cell. Synthetic spike 



 

trains were used to explore this question in detail. Approximation error was found to 

depend strongly on the regularity of spike trains over time. Figure 2 (panels A-D) shows 

approximations of band-limited current patterns by firing patterns with differing 

temporal regularity. Notably, spike trains with essentially constant firing rates (e.g. Fig. 

2A, B) could approximate arbitrarily chosen time-varying current patterns in the post-

synaptic cell model. However, error was markedly reduced as the CV of inter-spike 

intervals (ISI) increased.  

These results are not surprising when the currents at individual synapses are 

considered in the frequency domain. The currents at individual synapses can be viewed 

as temporal basis functions, which are weighted and summed to approximate the target 

pattern. The frequency content of these basis functions depends on the firing pattern of 

the corresponding pre-synaptic cell. For example, the current that arises from regular 

firing consists of harmonics of the firing frequency, while that arising from Poisson 

firing has a broad spectrum. This can be seen in the lower traces of Figure 2A-D, which 

show the power spectra of the first several principal components of the post-synaptic 

currents that are induced by each ensemble. Approximation error decreases with 

increasing power in the frequency range of the target current, and increases with 

increasing power at other frequencies.  

As a result, both Poisson-refractory and irregular-burst firing patterns can 

accurately generate target currents with a wide range of frequencies. Burst firing is 

more effective than Poisson-refractory firing, for driving low-frequency currents 

patterns. However, Poisson-refractory firing is effective over a slightly wider frequency 

range (Fig 2E). Firing patterns in most neural circuits tend to have high CV. These 



 

results begin to suggest that information contained in such patterns can be extracted in 

an accurate and flexible manner.  

Spike Jitter and Noise Spikes 

The results described so far are highly idealized in that they are based on noise-free 

firing patterns. In order to quantify the dependence of current generation accuracy on 

precise spike timing, simulations with synthetic spike trains of different CV were 

repeated with random (Gaussian-distributed) spike time jitter.  

Spike jitter with a given variance had the effect of increasing MSE by a near-

constant multiple, regardless of CV. Thus at high CV, where error without spike jitter 

was minimal, error remained relatively low even when substantial jitter was applied. 

For example, with bursting spike trains (CV > 1), 8 ms jitter resulted in error of at most 

5% of RMS current (Fig. 2F). Similar results were obtained when firing patterns were 

corrupted by inserting additional �noise spikes�, a t random times (determined by a 

constant-rate Poisson-refractory process) that were uncorrelated between repeated trials 

(Fig. 2G).  

Figure 3 shows an example in which half of the spikes are noise spikes, and the 

other half are subject to extreme Gaussian jitter (σ=20ms). The target pattern is 

nevertheless approximated with reasonable accuracy, illustrating that meaningful 

population output requires very little consistency in the fine temporal firing patterns of 

individual neurons, even in the absence of coarse firing rate variations.  

Population Size and Firing Rate 

For firing patterns with a given CV, error decreased with increasing pre-synaptic 

population size (Fig. 4). However, very large populations were not needed. For 



 

example, with 1ms spike jitter, 1000 pre-synaptic Poisson-refractory neurons were 

adequate to generate 500 ms signals with roughly 2% MSE. 

In contrast with population size, firing rate had little effect on the accuracy of 

current generation. Errors arising from Poisson-refractory inputs were consistent over a 

wide range of intermediate firing rates, increasing slightly both below 5 spikes/s and 

above 100 spikes/s (Fig 5). The increase in error with higher rates is related to the fact 

that the refractory time causes a more pronounced deviation from Poisson statistics 

(lower CV) at higher rates. This can be seen by comparing the solid and dashed lines in 

Figure 5.  

Correlated Firing 

We have essentially characterized synaptic currents as having low-frequency 

components that form an overcomplete temporal basis of possible somatic currents, 

over some range of frequency and time. Because such functions span a larger space if 

they are linearly independent, we hypothesized that spike timing correlations would 

impair performance. Synthetic spike trains were used to test this prediction (note that 

we did not study correlated variability here, as others have done, e.g. Abbott & Dayan, 

1999; Schneidman et al., 2003). Error generally increased with correlated spike timing, 

because when spikes were concentrated around correlation times, there were fewer 

spikes in the intervening periods, which is analogous to the population briefly consisting 

of fewer neurons (see previous section). However, the increase in error was minimal 

when correlation times were periodic at high frequencies (Fig. 6). This can be explained 

by noting that when correlation times are frequent, some of the post-synaptic currents 

that begin flowing around one correlation time will continue to flow until the next, so 

that the effective population size remains large throughout. These results suggest that 



 

while correlated firing may underlie some forms of temporal coding, it may preclude 

other forms that rely on diverse timing to support a wide range of temporal 

transformations. Another possibility is that correlated firing may gate such codes 

dynamically.  

Learning 

The results presented above are based on synaptic weights that were obtained using an 

artificial optimization method. The physiological relevance of these results depends on 

whether each synaptic weight can be independently learned, using only information that 

is available at the corresponding synapse. We found that synaptic weights can indeed be 

learned in this manner, provided some explicit error or target signal is available.  

The derivative of the error function defined earlier (see Methods), with respect to each 

synaptic weight, equals the inner product of the current and the error over time. This 

suggests a supervised learning rule in which each synaptic weight is updated at each 

instant, by ∆wi = - κ Ii
syn E, where κ is a constant learning rate, Ii

syn is the instantaneous 

current at the ith synapse, and E is the instantaneous error in net current. This learning 

rule quickly converges on results similar to those obtained with the optimization method 

(Figure 7). This remains true in the presence of spike jitter.  

Assuming an error signal were available, it is doubtful whether this signal would 

propagate instantly to each synapse. We therefore investigated the performance of the 

learning rule when ∆wi was based on low-pass filtered error and current signals. 

Filtering obscured high-frequency errors from the learning mechanism. Consequently, 

learning was slowed, and the resulting approximations contained more noise in the 

frequency range corresponding to the stop band of the filter (Figure 7). However, these 



 

limitations were not severe. Reasonable approximations were obtained even when the 

filter time constant was greater than the duration of the target signal. This demonstrates 

that learning can proceed on the basis of error information that is substantially lagged 

and temporally smoothed.  

Experimental Detection of Subtle Repeated Patterns 

As previously demonstrated, spike patterns with little trial-to-trial consistency can drive 

highly consistent activity in a post-synaptic target (Figure 3). This raises the question of 

whether spike patterns that have a stereotyped relationship with behavior might be 

driven by spike patterns that are so variable with respect to behavior that any underlying 

consistency evades experimental detection. Statistical power analyses were performed 

to address this question. The analyses estimate the numbers of repeated trials that would 

be needed to find peri-event variations in firing rate, under the assumption that such 

variations are as small as possible while still producing relatively reliable spiking in a 

post-synaptic cell.  

Figure 8 shows the numbers of trials that would be needed to detect the subtlest 

pre-synaptic firing patterns that could drive post-synaptic firing with various levels of 

consistency. The number of trials needed depends strongly on how reliable post-

synaptic spiking is assumed to be. This is because the more pronounced variations in 

pre-synaptic firing that would be needed to cause more reliable post-synaptic firing 

would also require fewer trials to detect. However, even if post-synaptic spiking were 

highly stereotyped (1% of spikes timed inconsistently from trial to trial), 50 or more 

repeated trials may be needed to distinguish the driving patterns from random firing. 

Throughout the range of error rates shown in Fig. 8A, trial-to-trial consistency is greater 

in post-synaptic than in pre-synaptic firing patterns. So, pre-synaptic firing patterns 



 

which are so subtle as to require over 1000 trials to detect may nevertheless drive much 

more stereotyped activity in post-synaptic cells. While the specific results of this 

analysis clearly depend on the assumptions made (e.g. degree of convergence; Poisson 

firing statistics), we take it that the same or similar assumptions describe many cortical 

and sub-cortical areas. The key observation is that substantially more trials may be 

needed to detect useful repeated firing patterns (e.g. over 100 trials, if a 10% rate of 

post-synaptic spike mistiming is assumed) than are typically collected in experimental 

studies (except in studies in which repeated trials consist only of brief sensory stimuli, 

e.g. Bair & Koch, 1996). 

In fact, these results may underestimate the capacity for highly variable spiking to 

produce stereotyped behaviour, because the power analyses ignore potential dynamic 

effects. Specifically, firing at the output of a network will have greater consistency if 

the network is more responsive to underlying firing patterns than to random 

fluctuations. Figure 8B shows the results of a simulation that illustrates this point using 

a Hodgkin-Huxley model (Koch, 1999) of a post-synaptic neuron. In this simulation, the 

receiving neuron is made less responsive to high-frequency random fluctuations in 

excitation, simply by including PSC dynamics with a relatively long time constant of 

20ms. Depending on the frequency content of signals in a given circuit, this particular 

filtering mechanism might not be useful. However there are other more sophisticated 

neural circuits that can perform, for example, band-pass filtering with any choice of 

corner frequencies (Tripp B & Eliasmith C, 2006, Comparison of neural circuits that 

estimate temporal derivatives, Cosyne 2006 Abstracts). This reinforces the conclusion 

that precise, reproducible behavior can in theory arise from highly variable neural 

activity.   



 

Discussion  

We have shown that even in the absence of coarse rate variations, irregular firing 

patterns can drive nearly any given pattern of activity in a post-synaptic neuron. 

Importantly, such transformations can be obtained through learning. These results have 

two main implications in terms of the interpretation of experimental data. First, a 

neuron�s pattern of firing around an event may not have an obvious temporal 

relationship with the neuron�s role in the event. For example, although a group of 

neurons fires faster only at the end of a movement, subtle differences in spike timing 

between neurons may drive some aspect of movement initiation. This is particularly true 

with respect to irregular and highly stereotyped firing patterns, such as those arising in 

MT responses to some visual stimuli (Bair & Koch, 1996), or in songbird vocalization 

(Hahnloser et al., 2002; although the same cannot be said if responses lack diversity 

across the population, e.g. see Reinagel & Reid, 2002). Furthermore, accuracy degrades 

gracefully with firing pattern variability, so that even firing patterns that are difficult to 

distinguish from random firing can drive relatively stereotyped activity. Therefore, the 

second main conclusion to be drawn from this study is that neither precise spike timing 

nor observable rate fluctuations can be relied on to expose all of the significance of a 

cell�s activity.  

While we have studied projections from a single neural ensemble to a single post-

synaptic neuron, the results also have implications for larger circuits. A single ensemble 

of neurons can drive different post-synaptic neurons in entirely different patterns (e.g. 

Figure 1c). As we have shown, several hundred neurons driven in diverse patterns 

would form a rich basis from which to drive activity in a subsequent layer. Therefore, 



 

although it remains to study how errors propagate through multiple layers, the present 

results clearly apply to larger circuits as well as to single projections.  

Our findings are in general agreement with the results of Gütig & Sompolinsky 

(2006) on the classification of firing patterns. If a neuron can be trained to spike in 

response only to selected population-temporal input patterns, as they have shown, then 

it would be expected that the same neuron could be made to exhibit arbitrarily chosen 

firing patterns by training it to respond only to selected short segments of a longer pre-

synaptic pattern.  

Medina et al. (2000) present a model of a specific neural circuit which they take to 

function in similar manner to the abstract circuits in the present study. Theirs is a 

classical conditioning model, in which cerebellar granular cells respond to a conditioned 

stimulus with diverse temporal firing patterns. An unconditioned stimulus serves as a 

training signal, decreasing or increasing the strength of granular cell synapses onto 

Purkinje cells, depending on whether granular cell activity is coincident with the 

unconditioned stimulus or not. After training, Purkinje cells in effect decode a temporal 

prediction of the unconditioned stimulus from diverse granule cell firing patterns. 

Synaptic weights are modulated on the basis of a target output rather than error, so 

learning ends when some physiological parameter is saturated, rather than when error is 

minimized. Otherwise this learning mechanism is analogous to the one presented here.  

The present study is also conceptually related to the liquid state machine (Maass 

et al., 2002). The liquid state machine relies on a diversity of neural responses to input, 

within a recurrent circuit, in order to approximate a broad class of temporal functions of 

the input. In contrast to the liquid state machine (the neurons of which fire at fluctuating 

rates), the present study explores how computations are effected by firing statistics in 



 

the absence of large-scale rate fluctuations. This focus leads to new implications (as 

describe above) with respect to the interpretation of electrophysiological data.  

Effects of Firing Statistics on Performance 

The relationships between the statistics of pre-synaptic firing patterns and the accuracy 

of post-synaptic current are remarkable in several respects. First, we have demonstrated 

that the irregularity of experimentally observed spike trains can provide a substantial 

functional advantage in terms of: 1) the accuracy with which neurons can drive current 

in a post-synaptic cell; and 2) the robustness of the current pattern to noise. For slowly-

varying current patterns, this advantage is even more pronounced with bursting neurons, 

highlighting a possible dimension in the functional relevance of burst firing that has 

received little attention (e.g., in Crick, 1984; Kepecs & Lisman, 2003; Lisman, 1997; 

Reinagel et al., 1999; DeBusk et al., 1997; Izhikevich et al., 2003b).  

Second, while it is well-established that greater numbers of neurons can drive 

current more accurately, we have demonstrated that even in the absence of precise spike 

timing or rate variations, very large numbers of neurons are not needed. As shown in 

Fig. 3, 1500 irregularly and inconsistently firing neurons can drive useful post-synaptic 

current patterns. The degree of convergence onto most neurons is far greater than this. 

For example, some �-motoneurons receive about 50,000 synaptic inputs, and cerebellar 

Purkinje cells receive as many as 200,000. This indicates that multiple firing-rate-

independent signals could converge on a single neuron pool. Furthermore, the same 

population firing pattern can induce vastly different currents in different cells (e.g. Fig. 

1C), so the same small group of neurons could drive a wide variety of activity 

elsewhere, limited only by the number of different cells to which it projects. 



 

Third, we have noted that under the conditions studied here, errors in post-

synaptic current are greater when the timing of pre-synaptic spikes is correlated. 

However, we have also shown that the increase in error is moderate when spike times 

are correlated at high frequencies. It is interesting to consider this result in relation to 

oscillations in local field potential (LFP), particularly in the context of motor control. 

Lower-frequency alpha and beta oscillations in motor cortical LFP usually disappear 

during movement, and are sometimes replaced, around movement onset, by higher-

frequency gamma oscillations (MacKay, 1997). Similar changes in LFP oscillations 

during movement occur in the cerebellum (Pellerin & Lamarre, 1997) and basal ganglia 

(Cassidy et al., 2002; Kühn et al., 2004; Courtemanche et al., 2003; Levy et al., 2002). 

Thus patterns of LFP oscillation in motor areas during movement and rest coincide with 

patterns of synchrony that allow and preclude (respectively) the type of coding 

presented here, pointing to the possibility of a role for this type of coding in motor 

control.  

Fourth, and finally, we have shown that errors in pattern generation were 

dominated by high-frequency fluctuations, a point which is also relevant to motor 

control. For example, 75% of the error in Fig. 2a was at frequencies above 100Hz, much 

higher than the frequency content of skeletal movement. The frequency spectrum of the 

error is relevant in the context of motor control, because the relationship between 

myoelectric activity and muscle forces resembles a low-pass filter (Olney & Winter, 

1985), and limb inertia has a further damping effect. Thus most of the error observed in 

this study (i.e. error at high frequencies) would not necessarily interfere with movement 

kinetics if it were present in a motor circuit. 

Timing vs. Rate 



 

Each of the synthetic firing patterns used in this study was generated from a constant ISI 

distribution, and in this sense has a constant mean firing rate. However, instantaneous 

rates fluctuated, because the patterns (with the exception of those in Fig. 2B) contained 

a range of inter-spike intervals. So, if these firing patterns were repeated over multiple 

trials, rate fluctuations would appear in the multi-trial spike histogram (although such 

fluctuations might be quite subtle, as in Figures 3 and 8). However, repeated task 

behaviour does not guarantee that related neurons exhibit repeated patterns. For 

example, a neuron�s activity may reflect something that varies from trial to trial, such as 

an error signal. Also, a neuron�s firing pattern might contain information about a 

repeated feature of an event only when considered in conjunction with the firing 

patterns of other neurons (Schneidman et al., 2003). For example, there are nearly 

identical segments in the final two rising slopes of the bottom trace of Fig. 1C, one of 

which is coincident with a gamma oscillation, and the other of which is not. Because 

instantaneous rate does not uniquely determine multi-trial rate, even if the neuron is 

noise-free, and because it is otherwise indistinguishable from timing, we use the term 

�rate� only to indicate the inverse of the mean of the ISI distribution.  

Limitations and Future Work 

The most important limitation of this study is that the dendritic model used here 

assumes linear combination of currents, as might occur (for example) with synapses on 

separate distal dendrites (Poirazi et al., 2003). Dendrites can also combine synaptic 

input in much more complex and varied ways, although some complexities of dendritic 

processing (including dendritic spiking) serve partly to compensate for passive cable 

properties rather than to implement non-linear computations (Rudolph & Destexhe, 

2003; Magee, 1999; Williams & Stuart, 2000; Magee & Cook, 2000). As noted in the 



 

Methods section, the present results are relevant to any case in which post-synaptic 

current is a monotonic function of total conductance. For any target current, in such 

cases, there is a corresponding sum of conductances that will produce it. In more 

complex cases, the present results may only apply under limited conditions, for example 

to activity within a single dendritic branch, or within a certain voltage range. It is 

beyond the present scope to explore how these results interact with more detailed 

models of specific cell types, but we expect that in many cases, sophisticated dendritic 

processing would enable further computations on the results of the computations 

modelled here. For example several temporal current patterns that are generated by 

near-linear synaptic integration might converge to be combined multiplicatively. The 

possibility of such additional dendritic processing does not seem to affect the basic 

conclusion that arbitrary timing-based information can be exploited in a flexible 

manner, under very general circumstances.  

One aspect of dendritic processing that would be particularly interesting to study, 

in relation to the current results, is variability in the dendritic membrane time constant 

(e.g. through neuromodulation). Changes in membrane time constant would alter the 

temporal relationships between somatic currents arising from different parts of the 

dendritic tree. If weights were tuned in relation to one time constant, such changes 

would be expected to result in additional noise in the somatic current, at frequencies of 

about 50Hz and higher. However, it might be possible to tune synaptic weights in order 

to exploit such changes functionally. For example, modulation of the time constant 

might synchronize or desynchronize distal excitatory inputs from more proximal 

inhibitory inputs, dramatically influencing the spiking pattern.  



 

We have shown that in principle, timing patterns can be exploited by the brain 

even if they are difficult to detect experimentally. This result is in a sense its own 

limitation, because it would be difficult to confirm that this was actually happening in a 

given circuit. A prerequisite would be that some functionality of a circuit could not be 

accounted for by firing rates or precise timing. Specific results of this study (e.g. 

relationships between error and firing statistics) may also help to resolve whether such a 

mechanism is feasible given other knowledge of the circuit. However, the only obvious 

way to test for this phenomenon directly is to perform large numbers of trials.  

Another limitation of this study is that although we have identified a learning rule 

that makes use of information which could plausibly be available at each synapse (i.e. 

each synapse does not need information from other synapses), this rule is speculative 

rather than being based on a known biological mechanism. It remains either to map this 

learning rule onto a demonstrated mechanism, or to explore the viability of other rules, 

for example rules based on rewards rather than error signals.   

While we have focused on how an ensemble of neurons can produce a single 

pattern of post-synaptic current in a given cell, it is unlikely that a cell is dedicated to 

producing a particular pattern. As a result, further work is needed to explore how our 

results generalize to the production of different current patterns in the same cell over 

short time scales, i.e. without substantial changes in synaptic weights. There are several 

possibilities. For example, an ensemble could produce a family of pattern primitives, 

which could be separately gated to produce a wide range of post-synaptic current 

patterns. A circuit of this form might function as a repository of arbitrarily complex 

motor programs, with parameters varied through gating.  



 

It may also be fruitful to explore how the firing patterns that arise from varying 

input to a network could drive a useful set of outputs. Certainly, the firing patterns that 

are produced by two different inputs could produce essentially any two patterns of post-

synaptic current. This is clear if one imagines that the spike pattern from 0-500ms in 

Figure 1 is produced by one input, and the pattern from 500-1000ms is produced by a 

second input. With a single set of synaptic weights, the two inputs result in two different 

current patterns. This remains true for more than two inputs, but error rises roughly 

linearly with the summed duration of the input/output mappings. However, if firing 

patterns reflected only a few milliseconds� input, then multi-input-multi-output mapping 

might result in good piece-wise approximations of a large family of desired outputs. 

This possibility is related to the liquid-state machine (Maass et al., 2002), but differs in 

a significant respect. Specifically, while computations in a liquid-state machine require 

traces of long-past inputs, we are suggesting that a similar architecture without such 

traces may enable population coding of time-varying inputs without time-varying firing 

rates.  

Population-Temporal Coding 

The present results make it clear that patterns of irregular spiking, perhaps generated by 

recurrent circuit dynamics, can drive a wide range of time-varying activity in other 

cells. In this light, we propose that it is reasonable to view any circuit that produces a 

temporal firing pattern, regardless of whether the pattern contains variations in firing 

rates, as being analogous to a central pattern generator.  That is, such a circuit is a 

versatile, intrinsic source of time-varying activity patterns (although mechanisms of 

pattern modulation may be different from those of classical central pattern generators). 



 

However, the ability of neurons to exploit timing-based information may have 

much broader uses. One interesting possibility is that a given pattern of input to a 

neuron might be analogous to the neuron�s preferred direction, in a multi-dimensional 

population code. For example, suppose a neuron were to receive input from a number of 

synfire chains (Diesmann et al., 1999; Ikegaya et al., 2004). The phase relationships 

among N+1 chains would span an N-dimensional vector space. Every vector in this 

space, i.e. every possible list of phases, would correspond to a certain pattern of input to 

the receiving neuron. As the present results demonstrate, almost any such input pattern 

could be transformed into almost any pattern of current. Moreover, deviations from this 

input pattern, either in terms of phase relationships or spike timing precision, would 

result in noisier current, much like deviations from preferred direction in a rate-based 

population code result in reduced current. An ensemble of neurons with different 

preferred phase relationships could support a population code over the space of phase 

relationships. The present results also suggest that a population code of this form could 

drive either a similar code in a receiving ensemble of neurons, or a rate-based 

population code (as evident from the square-pulse example of Fig. 1, in that a post-

synaptic neuron would fire faster during the excitatory pulse). Further work is needed to 

verify that such a population code can be supported by realistic neuron models, and to 

explore its computational power.  

In conclusion, the results of this study suggest that neurons can use information 

contained in the timing of incoming spikes, under very general conditions. Synchrony is 

not needed, and specialized synapses, neurons, and circuit structures are also 

unnecessary. Furthermore, incoming patterns can consist mostly of noise, and can 

therefore be very hard to detect experimentally, yet still produce behaviorally useful 



 

patterns. Finally, timing-based information can be transformed into a wide variety of 

outputs, in a manner that seems to accommodate a versatile population code.  

Appendix: Details of Power Analyses  

The effect sizes for power analyses were derived from the smallest increases in the 

firing rates of a noisy excitatory population that could be expected to produce a spike in 

a cell post-synaptic to this population. For simplicity, it was assumed that post-synaptic 

currents would decay such that the post-synaptic cell would fire if it received more than 

a fixed number of spikes from excitatory sources within a 5ms time bin. The rates of 

extra spikes and missing spikes in the post-synaptic cell were assumed to be the same, 

so that noise could be expressed as a single index, corresponding to the rate of mis-

timed spikes. For each spike in a post-synaptic cell, let n be the number of excitatory 

neurons converging onto the post-synaptic cell that have a slightly elevated, noisy rate 

increase that contributes probabilistically to the spike. The mean number of spikes in 

each bin, across these neurons, will be different for each trial. For large n, these trial 

means cluster around grand means in a Gaussian distribution with variance λ/n (where λ 

is the Poisson spike rate per bin). Reliability of post-synaptic spiking in this scenario 

will increase with greater differences between the grand means of the normal and 

elevated rates of pre-synaptic spiking. The grand-mean elevated rate of pre-synaptic 

spiking was set such that trial means for each bin crossed an intermediate threshold 

corresponding to a predetermined rate of mistimed post-synaptic spikes. Because rates 

were elevated only in very short (5ms) bins, this rate modulation can also be viewed as 

a noisy manipulation of spike timing.  

These analyses result in estimations of the numbers of trials in various conditions, 

which provide a 0.8 probability of finding minimal rate elevations (if they exist), with a 



 

one-way fixed-effects analysis of variance (ANOVA). The baseline and elevated rates 

were similar, so (because variance equals mean in a Poisson process) the ANOVA 

assumption of uniform variances was approximately satisfied. However, since the 

ANOVA relies on the sampling distribution of variances, which is sensitive to 

deviations from normality in the underlying distributions, results are presented from 

numerical experiments rather than from theoretical distributions. Each reported data 

point corresponds to the number of trials (rounded to the nearest integer) in each of a set 

of 1000 experiments, in which the null hypothesis (i.e. the hypothesis that there was no 

difference in firing rates across bins) was rejected between 799 and 801 times (α=.05). 

The validity of the ANOVA with Poisson-distributed data in these circumstances was 

also confirmed, in that the null hypothesis was rejected at the α=.05 level in roughly 50 

of 1000 experiments in which there were no systematic rate differences, regardless of 

the number of trials in each experiment. 
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Figure Captions 

Figure 1 Pattern generation example. A model of 1000 cortical neurons (Izhikevich, 

2003) can generate arbitrarily chosen current patterns in a post-synaptic cell. A, Spike 

times (one neuron per row).  B, Membrane potential of a typical excitatory neuron in 

this network (scale bar 20mV).  C, Current induced in three different post-synaptic 

cells, to which the network projects with different synaptic weights.  Currents are 

optimal approximations (gray) of target patterns (black dashed). Top: smoothed and 

scaled reflection of the network’s mean firing rate; middle: an arbitrarily chosen square 

current pulse; bottom: an arbitrarily chosen band-limited target (scale bars: 1nA and 

100ms). Time scale in C applies to all panels.  



 

Figure 2 Decreasing error with decreasing spike pattern regularity. All data are from 

simulations with 500 synthetic neurons, with mean firing rate 30 Hz, but different ISI 

distributions. In panels A-D, dots represent spike times of example neurons, black 

dashed lines are target currents, and grey lines are actual net synaptic currents flowing 

into the post-synaptic cell model. Coloured traces below are power spectra of the first 

five principal components of the post-synaptic currents (range 0-100Hz; shaded area 0-

5Hz). A, Neurons that fire at near-constant rates (CV=0.08; MSE=0.117nA). B, 

Constant rates with wider rate distribution (across neurons) than in A (CV=0; 

MSE=.015nA). C, Poisson-refractory neurons (CV=0.94; MSE=.002nA). D, Irregular-

bursting neurons (CV=1.7; MSE=.0003nA). E, MSE (as a proportion of RMS target 

current amplitude) in approximating sinusoids of different frequencies (mean over 5 

different phases at each frequency) for a wide range of CV. Error is generally high with 

low CV, except when sinusoid frequency is close to the mean firing frequency. F, MSE 

vs. CV. Separate lines are degrees of Gaussian jitter (SD as labelled). Error bars on top 

and bottom traces indicate SD over 5 randomly selected band-limited signals. Symbols 

O and X indicate means for a 500-neuron version of cortical network, and for the same 

network adjusted for higher CV (see Methods), respectively. G, As F but with noise in 

the form of additional, randomly-timed spikes instead of jitter. Number of noise spikes 

given as percentage of number of non-noise spikes. Dashed lines of the same color 

indicate errors with the same proportion of noise spikes, plus 4ms jitter.  

Figure 3 Moderate error with highly variable spike trains. The pre-synaptic population 

consists of 1500 synthetic Poisson-refractory spike trains. Each train consists of two 

interlaced 20 spike/s components. One component is subjected to large spike jitter 

(SD=20ms) that is uncorrelated between trials. The other component is completely 

uncorrelated between trials (i.e. in each trial this component consists of a new set of 



 

spikes from a Poisson-refractory process, which is independent of previous sets). A, 

Spike times of an example pre-synaptic neuron, over 32 trials used to find synaptic 

weights (dots), and two separate trials shown in panel C (circles). B, Spike time 

histogram of a single example neuron (scale bar: 10 spikes/s). C, Approximations (grey) 

of target current (black) for the two trials shown as circles in A (scale bar: 2nA). D, 

Membrane potential of a Hodgkin-Huxley model (Koch, 1999) driven by the two 

current approximations shown in C (scale bar: 100 ms applies to all panels). 

Figure 4 Error decreases with increasing population size. Results from Poisson-

refractory neurons (40 spikes/s), with different degrees of Gaussian spike time jitter are 

shown (jitter SD as labelled). Error bars on top and bottom traces indicate mean +/- SD 

of MSE over 5 randomly selected band-limited target currents (as a proportion of RMS 

target current amplitude). Error varies with spike jitter as in Figure 2.  

Figure 5 Error is nearly constant over a broad range of firing rates. Separate lines 

correspond to Gaussian jitter with SD as labelled. Solid black: Poisson-refractory 

neurons. Dashed grey: Poisson neurons. Error bars on top and bottom traces indicate 

mean +/- SD of MSE over 5 randomly selected band-limited target currents (as a 

proportion of RMS target current amplitude).  

Figure 6 Increasing error with increasing spike time correlation. A, MSE vs. 

Correlation (4ms jitter) with 500 Poisson-refractory neurons (40 spikes/s). Solid and 

dashed lines indicate Poisson and periodic correlation times, respectively (see Methods; 

α=10Hz; β=22Hz; γ=55Hz). MSE reported as proportion of RMS target current 

amplitude; bars indicate SD over five 300ms targets. B-D, Examples of approximations 

with Poisson, α, and γ correlations of roughly equal strength. Dots represent spike times 



 

of example neurons, black lines are target currents, and grey lines are the actual 

synaptic currents flowing into the post-synaptic cell model. Scale bars: 100ms and 1nA.  

Figure 7 Learning. A, Decrease in error over 1000 iterations of a Poisson-refractory 

spike pattern (500 neurons; 30 spikes/s), under the learning rule described in the text 

(see Results under the heading �Learning�). All syn aptic weights initially set to zero; 

target current as shown in other panels. Thick black lines indicate learning trials with no 

spike jitter. Three cases are shown, each with error data temporally filtered using a 

different 1st-order low-pass filter (time constants as labelled; τ=0 � indicates no filter). 

The thin grey lines which diverge from the black lines after ~10 iterations indicate 

corresponding cases repeated with 4ms (SD) jitter in the spike trains (only the τ=0s  and 

τ=0.05s cases are shown). Interestingly, there were substantial differences in error after 

a single iteration (left extreme of each line), depending on the filter time constant. 

Substantial filtering allowed the learning mechanism to accurately approximate the 

mean magnitude of the target signal in a single pass, although subsequent learning of 

the signal shape was slowed. Learning continued after 1000 iterations (not shown). For 

example with τ=.5, error was further reduced by about half, after 10,000 as opposed to 

1000 iterations. Panels B-D show target current (black) and approximation (grey) in 

various cases, after 1000 iterations. B, Neither filter nor spike jitter. C, Filter with 

τ=.05s. D, Spike jitter with SD=4ms. Scale bars: 100ms and 0.5 nA.  

Figure 8 Trials needed to detect subtle firing patterns. Results of prospective power 

analyses for (hypothetical) experiments to detect the smallest peri-event firing rate 

changes that could trigger reliably timed spiking in a post-synaptic cell. Assumptions 

are as described in the Methods. Details of the analysis are given in the Appendix. A, 

numbers of trials required for a type-II error rate of 0.2 with one-way ANOVA. More 



 

trials are needed to detect smaller pre-synaptic fluctuations in firing rate. The expected 

size of pre-synaptic rate fluctuations depends on the number of neurons contributing to 

each post-synaptic spike (black: 500; grey: 1000) out of a total of 10000, and on the 

reliability with which the post-synaptic cell is assumed to spike. For example, larger 

pre-synaptic variations in firing rate lead to more reliable post-synaptic timing, and also 

require fewer trials to detect. An impractically large number of trials may be needed to 

detect subtle patterns, unless it can be assumed that the patterns drive post-synaptic 

activity with a very low error rate. B, 100-trial spike timing histogram for an example 

neuron drawn from a population that drives post-synaptic firing with a mistimed spike 

rate of ~60%. C, 100-trial firing histogram for a Hodgkin-Huxley neuron driven by the 

population exemplified in B, with PSC time constant of 5ms. D, As C but with 20ms 

PSC time constant.  
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