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Abstract

We characterise the optimal demand and supply of favours in a dynamic principal-agent
model of joint production, in which heterogenous project opportunities arrive stochastically
and are publicly observed upon arrival, utility from these projects is non-transferable and
commitment to future production is limited. Our results characterise the optimal dynamic
contract, and we establish that the principal’s supply of favours (the production of projects
that benefit the agent but not the principal) is backloaded, that the principal’s demand
for favours (the production of projects that benefit the principal but not the agent) is
frontloaded, and that the production of projects is ordered by their comparative advantage,
that is, by their associated efficiency in extracting (for demanded projects) and providing
(for supplied projects) utility to the agent. Furthermore, we provide an exact construction
of the optimal contract when project opportunities follow a Markov process.
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1 Introduction

Many long-running contractual relationships feature activities that can only be undertaken

through mutual consent and effort. In these cases, the currency which supports current activi-

ties is the promise of collaboration in future activities, so that such relationships depend on a

web of mutual obligations generated by the exchange of favours. In this paper, we study a dyn-

amic relationship between a principal and an agent in which (a) heterogenous joint production

opportunities, henceforth called projects, arrive according to an arbitrary stochastic process,

(b) utility from these projects is non-transferable, and (c) commitment to future production is

limited. Our results characterise optimal dynamic contracts in this environment.

Many economic environments share the key features of our setting. In large firms, the terms

of an employee’s formal contract are often (at least partially) outside the purview of the em-

ployee’s manager. The authority of the manager, instead, involves some discretion in the choice

of tasks to allocate to the employee. The net benefits to the manager and employee from a spe-

cific task might differ, and the manager’s task selection at any point in their relationship must

balance these possibly conflicting incentives. In fact, informal contracts, which are agreements

regarding actions that are hard to describe ex ante and thus enforce ex post, constitute an im-

portant element of manager-employee relationships and can explain observed differences in firm

performance (Gibbons and Henderson, 2013).1 Our model is also general enough to encompass

environments outside the standard applications considered by the contracting literature. For

example, it can capture the trading of votes in legislatures: a party leader can recruit the vote

of a party member for her preferred bills in return for a commitment to support the member’s

preferred bills in the future. In this application, our results uncover the properties of those bills

that can be traded in such intertemporal deals.

Because projects are heterogeneous, the critical decision in these relationships is the se-

lection of those projects that are actually produced. An optimal dynamic contract represents

a production plan that maximises the principal’s ex ante utility from the relationship but re-

spects the agent’s ability to walk away, at any point, from the relationship. Because optimal

contracts are Pareto-undominated in any period, mutually beneficial projects are produced and

mutually disagreeable projects are not produced. Therefore, optimal contracts are completely

characterised by their production of projects that benefit the principal but not the agent (i.e.,

their demand for favours) and by their production of projects that benefit the agent but no the

1Informal contracts have been found to play role in transportation (Blader, Gartenberg, Henderson, and
Prat, 2015), bankruptcy of General Motors (Helper and Henderson, 2014), international trade (Antràs and
Foley, 2015; Macchiavello and Morjaria, 2015), drug discovery (Henderson, 1994; Henderson and Cockburn,
1994) and primary care quality (Gittell, 2002).
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principal (i.e., their supply of favours).

Our main results establish that, in an optimal contract, (a) the demand for favours is

frontloaded, (b) the supply of favours is backloaded and (c) the production of projects is ordered

by their rank in comparative advantage. More specifically, an optimal contract is associated

with the terms it promises to the agent at any given time, and these terms are represented by

history-contingent time thresholds that build in the frontloading of demand and backloading of

supply properties: for a demanded project, this threshold specifies time at which the principal

commits to stop the production of this project, while for a supplied project, this threshold

specifies the time at which the principal commits to start the production of this project. While

backloading and frontloading describe the production dynamics of any one project, the selection

of projects is driven by their rank in comparative advantage: the absolute value of the ratio of

the payoffs to the principal and to the agent from a project. A demanded project that ranks

high in comparative advantage is an efficient tool for the principal when she extracts utility from

the agent: it provides her with large benefit per util cost to the agent. Conversely, a supplied

project that ranks low in comparative advantage is an efficient tool for the principal when she

provides utility to the agent: it costs her little per util benefit to the agent. The terms of an

optimal contract specify a threshold project in the comparative advantage ranking such that all

more efficient projects are produced (i.e., demanded projects above the threshold and supplied

projects below the threshold) and all less efficient projects are not produced (i.e., demanded

projects below the threshold and supplied projects above the threshold).

All our main results are driven by the fact that the production decisions specified by an

optimal contract must respect the relative efficiency criterion embedded in projects’ comparative

advantage. More specifically, the principal will not promise to supply a favour to the agent

through a less efficient project if some future opportunity with a more efficient project is passed

over. Similarly, if the principal ever passes over demanding a favour that has high efficiency in

terms of extracting utility from the agent, then any future opportunity at less efficient projects

must also be passed over.

Optimal contracts give rise to simple production dynamics. The terms of an optimal contract

are updated whenever the principal demands a favour from the agent and when this happens

they become more generous towards the agent: the time thresholds decrease, which implies

that the principal stops demanding and starts supplying favours sooner, and the threshold

project moves up in comparative advantage, which increases the scope of supplied projects

and correspondingly decreases the scope of demanded projects. Because any demand for a

favour by the principal is associated with her commitment to supply a favour in the future,

the dynamics of the relationship are driven by the principal’s accumulation of increasingly less
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efficient commitments, which forces her to ration her demand for favours and concentrate it only

on the most efficient demanded projects. Moreover, while the history of the agent’s individual

rationality constraints drives the updating of the terms of the optimal contract, all contracts

eventually converge to an ex ante Pareto-efficient contract: a contract that maximises the

principal’s ex ante utility from the relationship subject only to a constraint on the agent’s ex ante

utility. An ex ante Pareto-efficient contract specifies stationary production decisions and splits

the set of projects into those that are always produced and those that are never produced (i.e.,

such a contract identifies a time-independent thresholds contract in the comparative advantage

ranking).

These results imply that the terms of an optimal contract favour the agent as the relationship

progresses, and hence are in line with well-known backloading results for dynamic relationships

(e.g., Ray, 2002). However, our results are not driven by the standard calculus through which

promising high future rewards to the agent optimally provides incentives for his current actions.

Rather, it is the principal’s accumulation of supply commitments, driven by her past demands

and leading to the rationing of future demands, that favours the agent. Moreover, our optimal

contracts display several features similar to dynamic risk-sharing contracts with limited com-

mitment (Thomas and Worrall, 1988; Ljungqvist and Sargent, 2004, Chapter 19): an optimal

contract transitions to more generous terms following a demand for a favour, it stays constant

between revisions and converges to an efficient contract. The first property is driven by the

principal minimising the costs of providing incentives for project production. Between revisi-

ons, an optimal contract stays constant but the players’ utility varies because some projects are

produced and some not depending on their ranking in comparative advantage. In risk-sharing

contracts it is the utility that is kept constant, due to risk aversion.

Remarkably, our main results depend neither on the players’ discounting, nor on the size

of the projects, nor on the stochastic process that drives arrival of the project opportunities.

The reason is that these determine the amount of production, not how production is organised

in a dynamic relationship. We show this in Section 4 when studying dynamic contracts under

the assumption that the project process is Markov. While this is a significant restriction, the

upside is that in this environment we provide an explicit construction of the optimal contract.

We also recover the amnesia property (Kocherlakota, 1996): an optimal contract disposes of

history dependence whenever its terms are revised. Optimal contracts do not satisfy the am-

nesia property in general because non-Markov project processes can display arbitrary history

dependence.

We study two further variants of the model. First, in Section 5 we show that a model

with transfers constitutes a special case of our general model. Our results then imply that
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the availability of monetary instruments does not crowd out production and that money in

dynamic relationships flows from the agent to the principal in the early stages and from the

principal to the agent in the later stages. Second, in Section 6 we relax the assumption that

the principal can commit to the production decisions specified by the contract. We provide

a necessary and sufficient condition for the optimal contract with commitment to be optimal

without commitment. We also explore, through examples, how the absence of commitment

affects the properties of optimal contracts highlighted by our main results.

Our work is closely related to the literature on informal risk-sharing in the presence of

stochastic endowment shocks (Thomas and Worrall, 1988; Kocherlakota, 1996; Dixit, Grossman,

and Gul, 2000).2 This literature works with endowment processes that are either iid or Markov,

while we allow for an arbitrary stochastic process generating project opportunities, and studies

consumption smoothing driven by risk aversion, while we assume that players are risk-neutral,

although their marginal utility from production varies stochastically, and focus on the selection

of those projects that are produced.

The second literature we relate to combines informal risk-sharing with hidden information,

typically about endowment shocks, and hence about the ability to provide a favour, or about

the players’ utility from production. This literature analyses simple counting chips mechanisms

(Möbius, 2001), their generalisations (Hauser and Hopenhayn, 2008) and dynamic contracts

with and without commitment (Guo and Hörner, 2015; Lipnowski and Ramos, 2016).3 In this

work truth-telling constraints ration players’ demands for favours, an effect absent in our model.

Instead, by abstracting from informational asymmetries between the principal and the agent,

we allow for a rich space of possible project opportunities, and we obtain detailed results on the

dynamics of project selection and production.

The work most closely related to ours is by Bird and Frug (2017) who study the production

of projects in a dynamic relationship with hidden information. In their model projects arrive

according to an independent Poisson processes, and their arrival is agent’s private information.

The hidden information environment makes their work different and complementary to ours.

Like us, Bird and Frug (2017) show that comparative advantage organises project production.

2Subsequent work extends the informal risk-sharing model and incorporates multiple groups (Ligon, Tho-
mas, and Worrall, 2002), group deviations (Genicot and Ray, 2003), storage (Ábrahám and Laczó, 2016), risk-
aversion heterogeneity (Laczó, 2014a,b), or social networks (Bloch, Genicot, and Ray, 2008; Jackson, Rodriguez-
Barraquer, and Tan, 2012; Ambrus, Möbius, and Szeidl, 2014). Within macroeconomics, the model has been
used to study consumption smoothing (Kocherlakota, 2004; Krueger and Perri, 2006; Broer, Kapička, and Klein,
2017) and endogenously incomplete markets (Kehoe and Levine, 1993; Kehoe and Perri, 2002; Ábrahám and
Cárceles-Poveda, 2006). Several contributions test the model empirically (Ligon et al., 2002; Mazzocco, 2007;
Laczó, 2014b; Bold and Broer, 2016).

3See Abdulkadiroğlu and Bagwell (2012, 2013); Thomas and Worrall (1990); Kováč, Krähmer, and Tatur
(2013) and Li, Matouschek, and Powell (2017) for further work.
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Differently from us, their optimal mechanism compensates the agent for disclosing a demand

project immediately after the disclosure, so as to free-up principal’s capacity to motivate future

disclosures. That is, their optimal mechanism frontloads the agent’s compensation.

The third literature we relate to combines informal risk-sharing with sequential actions.

The standard tension in this literature arises when a first-moving player invests and thus can

be expropriated by a second-moving player, giving rise to a hold-up situation (Thomas and

Worrall, 1994; Board, 2011).4 This literature has close connections to the literature on relational

contracts (Levin, 2003) that typically exploits transferability of utility to focus on stationary

equilibria, while optimal relationships are not stationary in our environment, even if we assume

that project opportunities are generated by an iid process.5

As a technical aside, we note that characterisations of dynamic contracts typically rely on re-

cursive formulations and thus on the Markov structure of the model’s stochastic processes.6 Our

most general results apply to an arbitrary stochastic process generating project opportunities,

so that our proofs need to rely on ‘direct’, not recursive, arguments.

2 Model

A principal and an agent participate in a long-lived relationship in which a joint project op-

portunity arises in each period t = 1, 2, . . .. Specifically, let U ⊂ R2 be a finite set and let

u = {ut}t≥1 be a U -valued stochastic process that describes the arrival of projects over time.

Let ut = (u1, . . . , ut) denote a project history at t, and let H denote the set of all such histories

for all times t. Because optimal contracts are indeterminate at histories that occur with zero

probability, we assume that P0(u
t) > 0 for all project histories ut. This is the only assumption

that we impose on the project process u for our main results, and we do so mainly to ease the

exposition.7 In Section 4, we assume further that u is Markov to study the properties of optimal

4Further applications include Albuquerque and Hopenhayn (2004); Opp (2012); Kovrijnykh (2013) and
Thomas and Worrall (2014). Several political economy contributions study self-enforcing voting (Maggi and
Morelli, 2006) or the effects of possible expropriation by self-interested politicians (Acemoglu, Golosov, and
Tsyvinski, 2008, 2011a,b; Aguiar, Amador, and Gopinath, 2009; Aguiar and Amador, 2011; Ales, Maziero, and
Yared, 2014; Yared, 2010).

5Notable exceptions are Fuchs (2007); Halac (2012, 2014); Li and Matouschek (2013); Barron and Li (2015)
and Fong and Li (2017a,b) who consider non-stationary dynamics in relational contracts.

6Use of ‘promised utilities’ as state variables has been pioneered by Spear and Srivastava (1987); Thomas and
Worrall (1988); Abreu, Pearce, and Stacchetti (1990). Marcet and Marimon (2016) use past binding multipliers
as history-dependent Pareto weights. Related but distinct is the dual recursive approach developed by Messner,
Pavoni, and Sleet (2012) and Pavoni, Sleet, and Messner (2016). Golosov, Tsyvinski, and Werquin (2016) and
Ljungqvist and Sargent (2004, Chapters 19 and 20) include comprehensive surveys of the recursive contracts
techniques.

7Any process with zero-probability events can be expressed as the limit of a sequence of processes without
such events. The limit of the corresponding sequence of optimal contracts, as characterised by our results, is an
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contracts in more detail.

Given a project ut at time t, the principal and the agent simultaneously decide whether or

not to participate in the production of the project. Because we wish to capture environments

in which projects are collaborative ventures that require the active engagement of both parties,

we assume that project ut is produced if and only if both players choose to participate. We let

ut = (uP,t, uA,t) denoted the payoffs to the principal and the agent if project ut is produced,

and we normalise each player’s payoff from no-production to 0. For simplicity, we assume that

the players’ stage preferences over the production of projects are strict, that is, that uA,t 6= 0

and uP,t 6= 0 for all projects ut. Therefore, player i (myopically) prefers to participate in the

production of project ut if ui,t > 0 and prefers not to participate if ui,t < 0. We model projects

parsimoniously, but we can easily accommodate projects which are more complicated ventures

with uncertain outcomes: in this case, ut is interpreted as the expected utilities that the principal

and the agent derive from these richer lotteries. Finally, the players discount future payoffs with

common factor δ ∈ (0, 1).

Both project histories and production decisions, and hence all players’ payoffs, are publicly

observable and verifiable. A contract κ : H → [0, 1] maps project histories into production

probabilities. Given a project history ut at time t, κ(ut), henceforth κt for short with history ut

understood, is the probability with which contract κ specifies that the project at t is produced.

That is, a contract specifies a complete plan for what projects should be produced by the

principal and the agent in all contingencies that can arise during their relationship. Furthermore,

contracts allow for the use of a public randomisation device which determines whether or not

production occurs following any given history.8 Let K denote the set of all contracts.

Given a contract κ and a history ut at time t, let

Ui,t = Et
∞∑
t′=t

δt
′−tκt′ui,t′ ,

denote the associated discounted sum of payoffs to player i starting from t, where the expectation

is taken conditional on the information available at t, which resides in project histories ut. Notice

that the linearity of the stage utilities in production probabilities implies that intertemporal

smoothing of production decisions due to risk-aversion plays no role in our results. For future

optimal contract for the limiting process. In this sense, our assumption generates a selection of optimal contracts
for project processes with zero-probability events.

8Interior production probabilities are useful to resolve rounding issues associated with the fact that pro-
duction choices are discrete, but they are not essential (e.g., they would not be needed in the continuous time
version of our model). Furthermore, as we show below, optimal contracts are essentially bang-bang.
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reference, note that we can rewrite

Ui,t = κtui,t + δEtUi,t+1.

We assume that production decisions within the relationship are contractible, but that the

agent has the option to irreversibly quit the relationship at the beginning of every period t, after

the realisation of project ut but before the realisation of the production decision (determined

by κt). Quitting yields a payoff of 0 to both players, which is the payoff they receive when no

project is ever produced. It follows that an optimal contract κ∗ is a solution to the problem

max
κ∈K

E0UP,1

subject to UA,t ≥ 0 for all project histories ut. (IRA,t)

In words, an optimal contract maximises principal’s ex-ante utility from the relationship subject

to being individually rational for the agent following all project histories.9 Our most general

results maintain the assumption that the principal can be contractually obligated not to quit

the relationship. In Section 6 we study the case of two-sided lack of commitment and require

contracts to be individually rational for the principal also (i.e., satisfy UP,t ≥ 0 for all project

histories ut).

In all periods, an optimal contract must specify production decisions that are (stage) Pareto-

undominated. In particular, this implies that if the preferences of the principal and the agent

over the project at t are aligned, then an optimal contract implements jointly optimal production

decisions.10

Lemma 1. If contract κ∗ is optimal, then

1. if uP,t, uA,t > 0, then κ∗t = 1, and

2. if uP,t, uA,t < 0, then κ∗t = 0.

This simple observation has the important implication that an optimal contract can be

identified with the production decisions it prescribes for those projects on which the principal

and the agent disagree. To this end, define the sets D = {v ∈ U : vP > 0 > vA} and

S = {w ∈ U : wA > 0 > wP}. Given a contract κ, we say that the principal demands a favour

with probability κt at t whenever vt ∈ D, and conversely that the principal supplies a favour with

9By the countability of project histories, standard arguments establish that an optimal contract always exists
(e.g., Dixit et al., 2000).

10The proofs of all results are in Appendix A.
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probability κt at t whenever wt ∈ S. Note that the production of projects u ∈ D ∪ S must rely

on dynamic incentives: finite relationships and static incentives cannot support the demand or

supply of favours.

Useful benchmarks to understand the effect of limited commitment on optimal contracts

are ex ante Pareto-efficient contracts, which maximise the principal’s expected period-1 utility

subject to a lower bound u on the agent’s expected period-1 utility. Formally, an efficient

contract κe is a solution to

max
κ∈K

E0UP,1 subject to E0UA,1 ≥ u.

As we show below, optimal contracts and ex ante Pareto-efficient contracts have a similar

structure, although that of the former is significantly richer. In particular, our characterisation

of optimal contracts can be applied directly to characterise ex ante Pareto-efficient contracts,

so that we will return to the latter benchmark after having stated our main results.

3 Optimal Contracts

The decomposition of an optimal contract into the demand and supply of favours turns out

to be a fruitful way to describe project selection dynamics. In this section, we provide a

characterisation of optimal contracts and show that the demand for favours is frontloaded, the

supply of favours is backloaded and the production of projects is ordered by their comparative

advantage. For ease of exposition, we break down our characterisation of the optimal contract

into two parts. In Proposition 1, we introduce the form of the optimal contract along with its

broad properties. Here we exploit front/backloading to describe the optimal contract through

(history dependent) time thresholds. In Proposition 2, we state our main results on project

selection in optimal contracts.

Proposition 1. Fix any project history ut. Without loss of generality for optimal payoffs, the

optimal contract takes the following cutoff form: for all v ∈ D, there exists a time threshold T vt

such that

κ∗t =


1 if T vtt ≥ t+ 1,

T vtt − t if t < T vtt < t+ 1,

0 if T vtt ≤ t;

(1)
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and for all for all w ∈ S, there exists a time threshold Twt such that

κ∗t =


1 if Twtt ≤ t,

t+ 1− Twt if t < Twtt < t+ 1,

0 if Twtt ≥ t+ 1.

(2)

Given any projects v and w, the thresholds T vt and Twt have the following properties.

1. T vt′ = T vt and Twt′ = Twt for all t′ > t such that
∑t′

s=t κ
∗
sIus∈D = 0.

2. T vt and Twt are non-increasing in t.

3. If T vt−1 > T vt or Twt−1 > Twt , then U∗A,t = 0.

4. Twt =∞ if
∑t

s=1 κ
∗
sIus∈D = 0.

Optimal contracts can be characterised by simple time-threshold rules. At any time t the

collection of history-dependent thresholds {T vt }v∈D identifies those projects that are used by

the principal to demand favours: any project with T vtt ≥ t + 1 is produced; no project with

T vtt ≤ t is produced; and any project with t < T vtt < t+ 1 is produced with interior probability.

Therefore, dT vt e is the earliest time at which the principal plans to demand favour v with

zero probability, conditional on the relationship’s status at time t. Similarly, time thresholds

{Twt }w∈S characterise the optimal supply of favours: no project with Twtt ≥ t + 1 is produced;

any project with Twtt ≤ t is produced; and any project with t < Twtt < t + 1 is produced with

interior probability. Again, bTwt c is the earliest time at which the principal plans to supply

favour w with positive probability, conditional the relationship’s status at time t. Note that

optimal contracts are typically bang-bang, which is due to the linearity of stage payoffs in

production probabilities.

Optimal contracts are constant when the relationship is in between two favours demanded

by the principal (Part 1). That is, the principal adjusts her plan for extracting utility from,

and returning utility to, the agent only after she has asked for a new favour, for which she

incurs a new utility debt. Also, asking for a new favour never leads the principal to become less

generous towards the agent: both the time T vt at which she stops demanding project v and the

time Twt at which she starts supplying project w can only move forward (Part 2). Notice the

associated backloading property in the optimal supply favours: by agreeing to use w to supply

a favour to the agent following some history, the principal also commits to supplying a favour

to the agent in all future occurrences of w. There is also an associated frontloading property in

the optimal demand for favours: if the principal ever passes on the opportunity to demand a
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favour v following some history, then the principal also commits to never demanding a favour

in all future occurrences of v. These properties are derived through arguments that rely on

the intertemporal reallocation of production, and the intuition behind them is most effectively

explained in combination with the results on project selection contained in Proposition 2 below.

While the principal can adjust her future demand and supply for favours whenever she de-

mands a new favour, she only does this if the failure to do so would violate the agent’s individual

rationality constraint. In particular, if the optimal contract becomes more generous when the

principal demands a new favour, then the agent must be indifferent between enacting the pro-

ject and quitting the relationship (Part 3). This does not imply that the agent’s individual

rationality constraint always binds in an optimal contract. In fact, the agent’s constraint must

be slack for some histories following a demand for a favour: if not, then the agent’s continuation

payoff following the favour would be 0, and because providing a favour is costly, the agent’s

feasibility constraint would fail. Therefore, the principal’s incentives to hold the terms of the

contract fixed while no intervening favours are demanded does benefit the agent, who obtains

positive utility when not strictly necessitated by incentives. However, the principal delays ad-

justing thresholds until doing so is necessary. Finally, and not surprisingly, it is never optimal

for the principal to supply any favours to the agent before she has demanded any favours (Part

4).

We turn to the paper’s main result, which determines which projects are undertaken in the

relationship between the principal and the agent and how this selection evolves over time. Given

our characterisation of optimal contracts in Proposition 1, this task is reduced to describing the

relationships between the various thresholds {T vt }v∈D and {Twt }w∈S . For all these results, a first

task is to determine those projects that the principal would prefer to use to demand favours from

the agent, or to supply favours to the agent, irrespective of any dynamic incentive considerations.

To this end, we define a comparative advantage ordering of projects such that u � u′ if and only

|uP/uA| > |u′P/u′A|. In words, if v, v′ ∈ D and v � v′, then project v has a comparative advantage

over project v′ when it is used by the principal to demand favours from the agent: in this case

the ratio vP/|vA| measures the efficiency of project v, from the principal’s perspective, as a tool

for extracting utility from the agent. Conversely, if w,w′ ∈ S and w′ � w, then project w has a

comparative advantage over project w′ when it is used by the principal to supply favours to the

agent: in this case the ratio wA/|wP | measures the efficiency of project w, from the principal’s

perspective, as a tool for providing utility to the agent. Put differently, comparative advantage

ranks demanded projects according to the principal’s benefit per util cost to the agent, and

supplied projects according to principal’s cost per util benefit to the agent. For simplicity, we

assume that the ordering � is complete on D ∪S, i.e., that all project pairs are ranked strictly
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by comparative advantage.

Proposition 2. The optimal time thresholds (1) and (2) have the following properties.

1. Fix projects v � v. If T vt < t+ 1, then T vt ≤ t.

2. Fix projects w � w. If Twt > t, then Twt =∞.

3. Let W t−1 = min�{w ∈ S : Twt−1 > t+ 1}. If v � W t−1, then T vt > t.

Let W t−1 = max�{w ∈ S : Twt−1 < t+ 2}. If W t−1 � v, then T vt ≤ t.

We first discuss the result that optimal contracts order the supply of favours according

to comparative advantage (Part 2). Note that following any history at most one threshold

project w∗ has t < Tw
∗

t < ∞: for all worse-ranked projects w � w∗ we have Twt = ∞ (and

hence κ∗t = 0), and for all better-ranked projects w∗ � w we have Twt ≤ t (and hence κ∗t = 1).

Furthermore, because the time thresholds {Twt }w∈S are non-increasing in t, the threshold project

w∗ is increasing (with respect to �) over time. That is, the principal transitions to supplying

favours via less advantageous projects as the relationship matures and the stock of past demands

accumulates. The heterogeneity of project opportunities generates multiple currencies that the

principal can use to reward the agent. The rank of supplied projects in comparative advantage

determines the principal’s preferences over these currencies as tools for returning utility to the

agent. Optimal contracts then require that the principal first commits to supply better-ranked,

and hence less costly, favours before committing to supply those favours that are worse ranked,

and hence more costly.

There is a tight connection between the prioritising of favours through comparative advan-

tage from Proposition 2 and the backloading of the supply projects from Proposition 1, which

explains why they are proved together in the Appendix. Notably, by concentrating her supply

of favours in the future, the principal ensures that she exhausts her stock of advantageous cur-

rencies before tapping into her remaining stocks. Establishing this requires considering simple

intertemporal reallocations of production. Contrary to our results, suppose that at some time

t the principal supplied favour w but that her future supply of better-ranked favours w � w

is not exhausted: i.e., there exists some continuation history at t′ > t such what ut′ = w and

κ∗t′ < 1. We show that the principal can gain by decreasing her supply of favour w at t and

increasing her supply of favour w at t′. This can be done while keeping the agent indifferent

at t, so that no individual rationality constraint is violated at any time r ≤ t, and the agent is

clearly better off at t′ (and hence at any time between t and t′).

The demand for favours is also ordered by comparative advantage (Part 1): there exists

at most one threshold project v∗ that has t < T v
∗

t < t + 1: for all worse-ranked projects
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v∗ � v we have T vt ≤ t (and hence κ∗t = 0), and for all better-ranked projects v � v∗ we have

T vt ≥ t+ 1 (and hence κ∗t = 1). Again, because the time thresholds {T vt }v∈D are non-increasing,

the threshold project v∗ is increasing (with respect to �) over time. That is, the principal stops

demanding favours that are worse ranked in comparative advantage before stopping her demand

for better-ranked favours. Because demanded projects that rank high in comparative advantage

represent beneficial currencies for extracting utility from the agent, the principal uses these

projects longer than the less beneficial ones. Again, this result is tied to the frontloading of

the demand for favours established in Proposition 1: the principal abandons less advantageous

currencies before ceasing the use of more advantageous ones. These results are established by

arguments analogous to those for the supply of favours sketched above. Specifically, contrary

to our results, suppose that at some time t the principal passed on an opportunity to demand

project v but that she demands lower-ranked favour v � v at some continuation history at

t′ > t. Again, we show that the principal can gain by shifting some production from t′ to t,

while meeting all of the agent’s individual rationality constraints at all histories.

From parts 1 and 2, we know that project priorities in the demand and the supply of favours

follows from comparative advantage. What remains is to describe the connection between the

principal’s selection of the projects that are used to demand favours and those that are used to

supply favours, which involves a simple comparison of marginal costs and benefits (Part 3). The

marginal benefit to the principal from demanding project v is determined by this project’s rank

in comparative advantage, which normalises the principal’s gain by the agent’s loss, because

the latter indexes the utility debt incurred by this project’s production. An important remark

is that the marginal cost to demanding favour v is endogenous. Specifically, the principal’s

accumulated commitments to supplying favours can differ at the various histories at which

project v can be demanded. Therefore, the marginal cost of asking for an additional favour is

measured by the comparative advantage ranking of the highest-ranked project w available to the

principal, which must be one of those projects that have not yet been committed to supplying

favours. In other words, the principal’s ability to demand an additional favour must depend on

what remains of the stocks of currencies that she uses to repay the agent.

To say more, we need additional notation, namely the projects W t−1 = min�{w ∈ S : Twt−1 >

t+1} and W t−1 = max�{w ∈ S : Twt−1 < t+2}. To interpret these definitions, suppose that the

principal is in a position to demand a favour from the agent on some project v at time t, and

note that the collection of thresholds {Twt−1}w∈S describe the supply commitments accumulated

in the relationship’s history up to t. The project W t−1 is the principal’s preferred project among

those that, if she does not demand v, would be used to supply favours to the agent with interior

or zero probability at t+ 1. Similarly, the project W t−1 is the principal’s least preferred project
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among those that, if she does not demand v, would be used to supply favours to the agent with

positive or unit probability at t + 1. In words, W t−1 is the best uncommitted supply project

and W t−1 is the worst committed supply project. Note that we have W t−1 � W t−1 whenever

W t−1 6= W t−1. Because any marginal increase in supply commitments at t will be delivered in

future occurrences of project W t−1, the principal must demand a favour with some probability

at t if v � W t−1. Conversely, because any marginal reduction in supply commitments at t

will reduce the production of future occurrences of projects that rank no better than W t−1 in

comparative advantage, the principal cannot demand a favour with any probability if W t−1 � v.

Note that this last result ties together the fact that the cutoff demanded and supplied

projects v∗ and w∗ both increase over time, and it illustrates how the frontloading of the demand

for favours is the natural complement to the backloading of their supply: as the principal

accumulates supply commitments over time, her marginal cost for asking new favours increases,

choking off her ability to demand additional favours. In other words, early in the relationship

the principal has large stocks of advantageous currencies with which to reward the agent, so

that she can demand payments from the agent in currencies that are not advantageous. Late

in the relationship if the principal’s stocks of advantageous currencies are exhausted, then she

can only demand payment from the agent in those currencies that the agent is most willing to

transfer to the principal.

Our characterisation of optimal contracts with limited commitment in Propositions 1 and 2

can be used to describe ex ante Pareto-efficient contracts, that is, those production plans that

would be optimal for the principal if the agent could commit to future commitment decisions.

Corollary 1. Lemma 1 applies to ex ante Pareto-efficient contracts as well, and, without loss

of generality for optimal payoffs, any such contract has the cutoff form described by (1) and (2).

Furthermore,

1. Thresholds {T vt }v∈D and {Twt }w∈S are history independent.

2. There exists at most one project ue ∈ D ∪ S with 1 < T u
e

1 < ∞. Furthermore, given any

u ∈ D ∪ S,

if u � ue then T u1 =∞, and if ue � u then T u1 = 1.

In efficient contracts, as in optimal contracts, production decisions must agree with the

players’ preferences when these agree. Furthermore, efficient contracts partition the set of

projects D ∪ S on which the players disagree into those projects that are produced and those

projects that are not produced. For almost all projects u ∈ D ∪ S production decisions are
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stationary, in that they specify a fixed production decision following all histories with the same

current project opportunity. At most one threshold project ue has non-stationary production

decisions: if ue ∈ D, then ue is demanded for a finite number of periods, and if ue ∈ S, then

ue is not supplied until a finite number of periods have elapsed. Furthermore, the set of those

projects that are produced and the set of those projects that are not produced are ordered by

comparative advantage.

To compare efficient and optimal contracts, note that because the cutoff demanded and

supplied projects v∗ and w∗ both increase over time and the number of potential projects is

finite, the optimal contract must converge, along each sequence of realisations of the project

process, to a stationary contract characterised by two sets of projects, those that are always

produced and those that are never produced. In other words, by Corollary 1, optimal contracts

converge to efficient contracts. The key difference is that efficient contracts allocate production

decisions evenly and identically across histories (again, with the exception of threshold project

ue), while optimal contracts must tailor production decisions to the agents’ individual rationality

constraints, which track the history of demands made by the principal. Therefore, some favour

v may be demanded by the principal following some histories but not others, which means

that the principal can demand favours ranked lower than v in the former histories but can

only demand favours ranked higher than v in the latter histories. The principal could gain by

smoothing out her demands across these types of histories, but this is incompatible with the

agent’s incentives.

4 Markov Project Processes

From Section 3, we know that the principal’s selection of projects in both the demand and

supply of favours is driven by their rank in comparative advantage. Somewhat surprisingly, the

absolute benefit to the principal of demanding favour v, measured by vP , or the absolute cost to

the principal of supplying favour w, measured by wP , do not on their own determine how these

projects are treated by the optimal contract. Instead, the value of project v to the principal

must be measured relative to the cost it imposes on the agent, just as the cost of project w for

the principal must be measures relative to the benefit it procures to the agent. More broadly,

our characterisation of optimal contracts is also independent of the players’ discounting and of

the stochastic process governing u. While these factors are not inputs into the optimal project

selection decision, they are important for determining the effect of a demand for a favour on

the agent’s individual rationality constraint. In other words, while project size, discounting and

the availability of future opportunities for favours as embedded in the project process do not
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affect optimal project prioritisation, they will affect the realised scope and level of production.

In this section we impose additional structure on the process driving joint project opportuni-

ties: we assume that u is a Markov process. This allows us to sharpen our results considerably,

and in fact we provide a complete characterisation of optimal contracts in this case. Further-

more, simple examples are very tractable in this setting, so that we can easily illustrate the

properties and dynamics of optimal contracts. An important note is that a Markov project pro-

cess u does not generate optimal contracts that are themselves stationary, that is, that specify

the same production decisions following all histories with the same current project opportunity.

In fact, optimal contracts are history-dependent even in the special case of iid project proces-

ses. There are two related explanations for this fact. First, as we established in Propositions

1 and 2, the backloading of the supply of favours and the frontloading of the demand for fa-

vours naturally induces non-stationarity in project production. Second, the history of binding

individual rationality constraints matters for optimal contracts, and different occurrences of the

same project can be treated differently if they are preceded by different histories of production

decisions.

Recall that the agent’s individual rationality constraint can only bind if the principal de-

mands a favour. The key to Proposition 3 below, which is our characterisation of optimal

contracts with Markov project processes, is to associate a contract that extends a minimal level

of generosity towards the agent to all projects at which the principal can demand a favour (pro-

jects v ∈ D). The critical implication of the process u being Markov is that these minimally

generous contracts are history-independent. In turn, these minimally generous contracts are

used to construct the time-thresholds {T vt }v∈D and {Twt }w∈S that characterise optimal demand

and supply processes in Propositions 1 and 2 through an explicit, recursive procedure.

Proposition 3. Suppose that the project process u is Markov. For all v, v′ ∈ D and all w ∈ S,

there exist τ v
′v, τ v

′w ≥ 0 that recursively define the optimal time thresholds T vt from (1) and Twt

from (2) as follows.

1. T v0 = Tw0 =∞ for all v ∈ D and w ∈ S.

2. Given any t ≥ 1,

T vt =

t+ τ vtv if t+ τ vtv < T vt−1,

T vt−1 otherwise,
for all v ∈ D, and

Twt =

t+ τ vtw if t+ τ vtw < Twt−1,

Twt−1 otherwise,
for all w ∈ S.
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Given an opportunity for the principal to demand favour vt at time t, dτ vtve is interpreted

as the number of periods from t during which the principal would demand favour v ∈ D, and

bτ vtwc is interpreted as the number of periods from t before the principal starts to supply favour

w ∈ S. Whether or not the principal actually implements the contract described by {τ vtv}v∈D
and {τ vtw}w∈S following some demand for favour vt depends on the project history. If vt is

the principal’s first opportunity to demand a favour, then she will temporarily commit to time

thresholds {t+τ vtv}v∈D and {t+τ vtw}w∈S from t on. These commitments are revisited whenever

an opportunity for a new favour vt′ arises at t′ > t, in which case there are two possibilities.

First, if the inherited contract is sufficiently generous to satisfy constraint (IRA,t′), then the

principals’ commitments from t are extended from t′ on, i.e., the terms of the contract remain

unchanged. Note that commitments determined by {τ vtv}v∈D and {τ vtw}w∈S may have initially

been less generous than those determined by {τ vt′v}v∈D and {τ vt′w}w∈S . However, at t′ the time

remaining before the principal stops demanding favour v is t+ τ vtv − t′ and the time remaining

before she starts to supply favour w is t + τ vtw − t′, so that inherited commitments can be

more generous than new commitments if enough time has elapsed since an original demand

for a favour. Second, if inherited commitments fall short of those determined by {τ vt′v}v∈D
and {τ vt′w}w∈S , then the contract is updated to these more generous commitments, which are

themselves revisited the next time a project arrives at which a favour can be demanded by the

principal.

Proposition 3 reproduces the properties of optimal contracts for general project processes

derived in Propositions 1 and 2 and adds an exact description of how the history of binding indi-

vidual rationality constraints shapes the current state of the relationship between the principal

and the agent. We can go further: a key step in the proof of Proposition 3 is the construction

of a ranking of projects v ∈ D in terms of the stringency of their corresponding individual

rationality constraints for the agent under the optimal contract.

Corollary 2. Given any projects v, v ∈ D, if either

τ vv ≤ τ vv for some v ∈ D or τ vw ≤ τ vw for some w ∈ S,

then both

τ vv ≤ τ vv for all v ∈ D and τ vw ≤ τ vw for all w ∈ S.

Given two projects v and v at which the principal can demand a favour, the resulting time

thresholds ({τ vv}v∈D, {τ vw}w∈S) and ({τ vv}v∈D, {τ vw}w∈S) can be ranked uniformly in terms of

their generosity to the agent. This yields a concrete sense in which project v is more costly to
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demand for the principal than project v: in return, the principal must commit (at least provisio-

nally) to demand less, and supply more, future favours to the agent. Also, note that Corollary 2

allows us to recover the relevant stationarity property of optimal contracts with Markov project

processes: while an optimal contract will not specify similar production decisions following all

histories with the same current project opportunity, it will specify similar production decisions

following histories with the same current project opportunities that have met the same most

costly demand for a favour, irrespective of the other properties of these histories.

Intuitively, this ranking of projects v ∈ D by the stringency of their individual rationality

constraints depends on two factors: the absolute cost to the agent associated with the demand for

favour v (indexed by |vA|), and the value to the agent of future project opportunities conditional

on having reached project v. This last factor depends on the project process u. However, if

the project process is iid, then the value to the agent of future project opportunities is history-

independent. In that case, the stringency of agent-feasibility constraints for favours that the

principal can demand are ranked solely by their stage costs to the agent.

Corollary 3. If the project process u is iid, then, given any projects v, v ∈ D,

τ vv ≤ τ vv for all v ∈ D and τ vw ≤ τ vw for all w ∈ S if and only if |vA| ≥ |vA|.

This provides a comparative statics result of sorts, which shows how optimal contracts vary

with the properties of the project process u. As noted above, even if the process u is iid, the

optimal contract is not stationary and depends on the relationship’s history of transitions to

favours that are more costly to demand for the principal. However, in this case the ranking of

favours in terms of their cost to the principal is independent of the process u. If instead u is

Markov but not iid, then the ranking of projects v ∈ D by the stringency of their individual

rationality constraints, while stationary, depends on the details of the process u; having reached

v instead of v implies not only different costs to the agent but also different distributions over

future project opportunities. We illustrate this in Example 1 below.

The proof of Proposition 3 constructs an optimal contract through an inductive sequence of

reduced problems. To this end, fix any project v′ ∈ D and suppose that u1 = v′. We define the

reduced problem

max
κ∈K

UP,1 subject to UA,1 ≥ 0, (3)

which corresponds to the problem of finding an optimal contract conditional on u1 = v′, but in

which only constraint (IRA,1) is required to hold. This problem has a solution determined by

fixed time thresholds
(
{τ v′v}v∈D, {τ v

′w}w∈S
)
: contrary to the corresponding history-dependent
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thresholds of Propositions 1 and 2, these do not need to be adjusted at times t > 1 because no

future individual rationality constraints need to be accommodated. Nevertheless, this solution

has properties that are expected given our results for general project processes. First, if τ v
′v > 0,

then τ v
′v = ∞ for all v � v. In words, an optimal contract for problem (3) has the principal

select a threshold demanded project, with all projects ranked higher in comparative advantage

always demanded, and all projects ranked lower in comparative advantage never demanded.

Second, if τ v
′w < ∞, then τ v

′w = 0 for all w � w. In words, an optimal contract for problem

(3) also has the principal select a threshold supplied project, with all projects ranked higher in

comparative advantage never supplied, and all projects ranked lower in comparative advantage

always supplied. Third, if v � w and τ v
′v < ∞, then τ v

′w = 0. In words, the lowest-ranked

project among those that are demanded by the principal must be succeeded (in comparative

advantage) by the highest-ranked project among those that are supplied by the principal.

The last point implies the following comparison of solutions to the reduced problem (3)

for different initial u1: if the principal demands less favours following u1 = v than following

u1 = v, then she must also supply more favours following u1 = v than following u1 = v. In

words, solutions to (3) following u1 = v and u1 = v are ordered by the stringency of their initial

individual rationality constraints, or equivalently by their generosity to the agent.

Now consider the project v1 with the most generous solution to (3), which we denote by κ1∗.

Because the process u is Markov and this contract becomes more generous over time, then it

must satisfy constraint (IRA,t) if ut = v1 at all times t > 1. Furthermore, contract κ1∗ must

also satisfy (IRA,t) if ut = v 6= v1 at all times t > 1. This follows because, again, u is Markov,

and also because κ1∗ is the most generous solution to (3) among all initial projects u1. Finally,

because the solution to the reduced problem (3) satisfies (IRA,t) for all t, it follows that no

contract can simultaneously yield higher payoff to the principal following ut with ut = v1 and

respect agent’s individual rationality at all t′ ≥ t.

With project v1 assigned as the costliest project to demand for the principal in our ordering

of projects v ∈ D, we proceed inductively to define the second project in this ordering. Given

any u1 = v′ 6= v1, we define the reduced problem

max
κ∈K

UP,1 subject to UA,1 ≥ 0,

UA,t ≥ 0 at each history with ut = v1,

κ = κ1∗ at each history with ut = v1 and UA,t = 0,

(4)

which corresponds to the problem of finding an optimal contract conditional on (i) u1 = v′, (ii)

on constraint (IRA,1) being required to hold, and (iii) on constraint (IRA,t) being required to
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hold at all histories with ut = v1, with the contract κ1∗ being specified whenever this constraint

binds at such histories. For the same reasons as above, the solution to problem (4) is such that

(i) either the relationship has transitioned to κ1∗ following some occurrence of v1, or otherwise

(ii) this solution is determined by fixed time thresholds
(
{τ v′v}v∈D, {τ v

′w}w∈S
)
. Furthermore,

these time thresholds are ranked by their generosity to the agent. The second project v2 in

our ordering of projects v ∈ D, interpreted as the second-costliest favour for the principal to

demand, is therefore the project for which the solution to (4) is the most generous to the agent,

and we can define the corresponding contract κ2∗. Finally, for the same reasons as above, this

contract is agent-feasible at all t > 1, so that no contract can yield higher payoffs to the principal

and respect agent’s individual rationality following any history at which project v2 occurs. This

inductive process can be repeated to rank all projects v ∈ D in terms of how costly they are for

the principal to demand and to complete the construction of the optimal contract.

Note the critical feature of this construction: the project v2 is determined by anticipating

transitions to the more generous contract that follows a demand for the costliest favour v1 at

some future time. Demands of less costly favours are also anticipated, but in these cases the

adjustments of κ2∗ are not necessary to satisfy the agent’s individual rationality constraint.

Furthermore, anticipating costlier favours in the future allows the principal to demand more of

less costly favours than she could do otherwise. To see this, note that from above we know that

the solution to problem (3) given u1 = v2 does not, in general, satisfy (IRA,t) if ut = v1 at time

t > 1. Also, the contract κ1∗ is not optimal for the principal if u1 = v 6= v1, because it is too

generous towards the agent. Therefore, by anticipating that the relationship may transition to

the more generous κ1∗ following some histories, the solution to problem (4) for u1 = v2 can be

less generous to the agent before such a transition than the solution to problem (3) for u1 = v2

would be. We illustrate this in Example 1 below.

For all the examples in the paper, we adopt the following simple setting, with a Markov

project process over three projects, two that the principal can demand as favours and one that

the principal can supply as a favour.

Example. Suppose that D = {v, v}, that S = {w} and that U = D ∪ S (i.e., there are no

projects on which the preferences of the principal and the agent are aligned). Given any time t

and projects u, u′ ∈ U , let Pt(ut+1 = u′|ut = u) = puu′ . Let projects be ordered in comparative

advantage such that v � v � w.

Example 1. Suppose that |vA| > |vA|, so that the agent finds project v more costly to produce

than project v. Given any 0 ≤ q ≤ 1/3, suppose that pvu = 1/3 for all u ∈ U , that pvv = 1/3,

pvv = 1/3 + q and pvw = 1/3− q, and that pwv = 1/3, pwv = 1/3− q and pww = 1/3 + q. Notice that

for any value of q, the unique stationary distribution of the project process assigns probability
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1/3 to projects v, v and w. Therefore, higher values of q increase the persistence of states v and

w, while leaving fixed the unconditional expectation of the occurrence of any given project.

If q = 0, then the project process is iid and from Corollary 3, we have that under the

optimal contract the most stringent individual rationality constraint for the agent is associated

to project v. If we assume that

−|vA|+
δ/3

1− δ
[wA − |vA|] > 0 (5)

and that

−|vA|+
δ/3

1− δ
[wA − [|vA|+ |vA|]] < 0, (6)

then it follows that the solution to (3) for u1 = v has τ vv = ∞ (the principal always demands

favour v), 0 < τ vv < ∞ (the principal demands favour v for a finite number of periods), and

τ vw = 0 (the principal always supplies favour w).

The thresholds {τ vu}u∈U are given by solution to (4) for u1 = v. Because the thresholds

{τ vu}u∈U that solve (3) given u1 = v are admissible in (4) given u1 = v but are such that

UA,1 > 0, we must have τ vv > τ vv. That is, the principal demands favour v for more periods

following an initial demand for v than for v.

Under the optimal contract, no production occurs until the first realisation of v or v. If

v is the first opportunity for the principal to demand a favour, then the thresholds {τ vu}u∈U
describe future production decisions. Furthermore, these are never adjusted in the future, as

the continuation contracts are individually rational for the agent following future realisations of

both v and v. If instead v is the first opportunity for the principal to demand a favour, then the

principal temporarily implements the less generous thresholds {τ vu}u∈U , anticipating that they

may be adjusted to {τ vu}u∈U , if needed, following the first arrival of project v. Notice that even

as τ vv → 0, we must nevertheless have that τ vv > 0. This illustrates the history-dependence

of the set of projects that are produced in the relationship, in the sense that whether or not

project v is ever produced depends on the order in which the projects at which the principal

can demand a favour are realised: the least costly favour v can precede, but not follow, the

most costly favour v.

Now suppose that q = 1/3. First, note that, given any u ∈ U and any t > 1, P1(ut = u|u1 = v)

is independent of q. This implies that the solution to the reduced problem (3) given u1 = v

is also independent of q. Therefore, under assumptions (5) and (6) as above, this solution

has τ vv = ∞, 0 < τ vv < ∞, and τ vw = 0. For the remainder of the example, consider

parameters for this example such that τ vv → ∞. Second, let U τ
A,1 denote the payoff to the
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agent from the contract specified by thresholds {τ vu}u∈U , but evaluated conditional on u1 = v.

Because the thresholds {τ vu}u∈U solve (3) given u1 = v, we have that U
τ

A,1 = 0. Moreover, the

thresholds (in the limit) specify a stationary contract with full production of all projects and

thus U τ
A,1 → −|vA|+ δ

[
2/3U τ

A,1 + 1/3U
τ

A,1

]
, or, equivalently

U τ
A,1 →

−|vA|
1− 2δ/3

< 0.

It follows that the thresholds that solve (3), given u1 = v and u1 = v, must satisfy τ vv < τ vv.

In words, the optimal contract’s most stringent individual rationality constraint for the agent is

associated to project v, so that even though the stage cost to the agent of producing this project

is lower than that of project v, the optimal contract following this project is more generous to

the agent. This is driven by the differences in the continuation project opportunities following v

and v; when q = 1/3, the project process transitions from v to w with probability 1/3, but never

transitions from v to w. That is, conditional on v, the principal has few opportunities to supply

favour w to the agent, which limits the demands for the less costly favour v that the agent can

accept.

5 Transfers

So far, we have not explicitly allowed for monetary transfers between the principal and the

agent. This streamlines the presentation of our model and it tightens its relationship to the

applications we find most relevant, in which transfers are either illegal, considered unethical, or

are dictated by contracts not under the control of the principal. However, given the flexibility

allowed by our general specification of the process driving project arrivals, we can show that

a model with transfers is included as a special case of our model, so that all our results from

above are valid without change.

To see this, assume that the set U includes projects mD ∈ D and mS ∈ S, and that these

satisfy (mD
P ,m

D
A) = (k̄,−k̄) and (mS

P ,m
S
A) = (−k̄, k̄). In particular, note that this implies

that mDP/|mDA | = |mSP |/mSA = 1. Suppose that, fixing 0 < ε < 1, (i) given any history with

ut ∈ U \ {mD,mS}, we have that Pt(ut+1 = mD) = 1 − ε, and (ii) given any history with

ut = mD, we have that Pt(ut+1 = mS) = 1 − ε. The limiting model as ε → 0 is essentially

equivalent to one with a stage game in which every project opportunity is followed by the

possibility of transfers between the principal and the agent, and furthermore these payments

become unlimited as k →∞ as well.

While our characterisation of the optimal contract also describes the optimal contract in
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the model with transfers, our results also provide specific implications regarding the use of

money in the dynamic relationships captured by our environment. First, the ability for the

principal to use transfers to reward the agent does not crowd out the use of production to

supply favours: e.g., projects w ∈ S with mS � w are always used by the principal to supply

favours to the agent whenever the principal also uses transfers to reward the agent. The fact

that transfers are available does not imply that the principal will reimburse the agent for a

demand for a favour using money, as some future project opportunities may be more efficient

for returning utility to the agent. Furthermore, in an optimal contract the principal may even

supply favours using projects w � mS ranked lower than money in comparative advantage, if

the constraint on the ability to transfer money is tight. However, as k → ∞, the principal

will always use money instead of lower-ranked projects. Second, the direction of the flow of

money between the principal and the agent varies over the relationship’s lifetime: the principal

demands transfers from the agent early in the relationship, and supplies transfers to the agent

later in the relationship.

6 No Commitment

A key feature of optimal contracts in this dynamic environment is that the principal’s generosity

towards the agent increases over time, through a decrease in her demand for favours and an

increase in her supply of favours. An intuitive conjecture is that an optimal contract should be

individually rational for the principal as long as it is individually rational in the later stages of

the relationship. This is not correct in general because given an arbitrary project process, the

monotonic worsening in the contract’s terms for the principal need not generate a monotonic

decrease in her payoffs. However, if the project process is Markov, then with probability 1 the

terms of the contract stop evolving in finite time and furthermore, given any project u, the

principal’s payoff decreases over all successive realisations of this project. Therefore, we have a

simple necessary condition for an optimal contract to be robust to a lack of commitment by the

principal: after the contract has stabilised to its most generous terms towards the agent, the

principal must have the incentive to supply the favour she finds the most expensive to supply.

Example 2. Return to the iid setting from Example 1 with q = 0, in which project v has the

most stringent individual rationality constraint for the agent. Under conditions (5) and (6), the

principal’s lowest payoff under the optimal contract occurs when she supplies favour w after

having stopped demanding favour v. Therefore, the optimal contract is individually rational for
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the principal if and only if

−|wP |+
δ/3

1− δ
[vP − |wP |] ≥ 0.

It is easy to see that in some cases, the optimal contract with commitment cannot be individually

rational for the principal. If we assume instead that

−|vA|+
δ/3

1− δ
[wA − |vA|] < 0, (7)

then it follows that the solution to (3) for u1 = v has τ vv < ∞, τ vv = 0 and τ vw = 0. That is,

under the optimal contract the principal eventually ceases to demand any favours and always

supplies favour w, and her individual rationality constraint must fail at any such history.

With Markov project processes, we can select from the set of optimal contracts to limit the

backloading of the agent’s payoffs and hence minimise the principal’s commitment problem.

To do this, we must first provide an alternative characterisation of optimal contracts in this

case. We do this through contracts with piecewise constant probabilities, that is, contracts

that specify constant, and typically interior, production probabilities for all projects, with these

probabilities revised when the principal demands a new favour.

Lemma 2. Suppose that the project process u is Markov. For all v, v′ ∈ D and all w ∈ S, there

exist 0 ≤ κv
′v, κv

′w ≤ 1 that recursively define an optimal contract κ∗ as follows.

1. κv0 = 1 for all v ∈ D and κw0 = 0 for all w ∈ S.

2. Given any t ≥ 1,

κvt =

κvtv if κvtv < κvt−1,

κvt−1 otherwise,
for all v ∈ D,

κwt =

κvtw if κvtw > κwt ,

κwt−1 otherwise,
for all w ∈ S.

Under a contract with piecewise constant probabilities, the payoffs to both the principal

and the agent are constant for successive realisations of the same project in the absence of

further demands by the principal. From our previous results, it also follows that under such

contracts production probabilities are decreasing over time for projects that can be demanded

as favours and increasing over time for projects that can be supplied as favours. The result of

24



Lemma 2 is analogous to Proposition 3, and in fact it consists in selecting constant probability

solutions to the sequence of reduced problems starting with (3).11 Furthermore, among the

class of solutions to this sequence of problems, a solution with piecewise constant probabilities

maximises the principal’s minimal payoff over all histories. From this remark follows a simple

necessary and sufficient condition for the optimal contract to be robust to limited commitment

by the principal.

Proposition 4. Suppose that the project process u is Markov. Let v ∈ D have the most generous

solution to the reduced problem (3) with u1 = v, and consider its representation with piecewise

constant probabilities. Then the principal’s payoff from an optimal contract is the same with

and without commitment if and only if

min{UP,2 : u2 ∈ S} ≥ 0.

We can discuss the key factors under which the condition from Proposition 4 is satisfied by

continuing our example.

Example 3. Returning to the final part of Example 2, under condition (7) we have that the

constant probability solution to (3) with u1 = v has κvv = 0 and κvw = 1. Furthermore,

0 < κvv < 1 is given by the unique solution to the equation

−κvv|vA|+
δ/3

1− δ
[
wA − κvv|vA|

]
= 0. (8)

Therefore, while the time-threshold representation of the optimal contract is not individually

rational for the principal, its representation with piecewise constant probabilities is individually

rational if

−|wP |+
δ/3

1− δ
[
κvvvP − |wP |

]
≥ 0,

which, after substituting (8), is rewritten as

vP
|vA|
−
[

1− 2/3δ
δ/3

]2 |wP |
wA
≥ 0. (9)

Because v � w, we have that vP
|vA|

> |wP |
wA

and it follows that condition (9) is always satisfied if δ

is high. That is, the comparative advantage ranking indicates that there are gains from trade

that the principal can capture by demanding favour v and supplying favour w, but these may

11The proof follows from almost identical argument and is omitted.
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not be realised in the absence of commitment if the principal is shortsighted. Alternatively, the

gains from trade from this relationship can be made bigger if the comparative advantage gap

between v and w grows. A final factor which affects the principal’s value from her relationship

with the agent, but which is absent from this example, is the production of common-interest

projects. An immediate observation is that the optimal contract with commitment must also

be optimal without commitment if, following each history, the probability that common-interest

projects will arise in the continuation game is sufficiently high.

A characterisation of optimal contracts with two-sided lack of commitment is much less

tractable than our results to date for the case of one-sided commitment, even in the case of

Markov project processes. In the remainder of this section, we illustrate through examples

how the key features of optimal contracts that we have described so far are affected when the

condition of Proposition 4 is violated.

Example 4. Return to the iid setting from Example 1 with q = 0, in which project v has the

most stringent individual rationality constraint for the agent. Suppose that

−|vA|+
δ/3

1− δ
[wA − [|vA|+ |vA|]] > 0,

so that with commitment, the optimal contract with piecewise constant probabilities is such that

κvv = κvv = 1 and κvw < 1. Note that this also implies that κvv = κvv = 1 and κvw < κvw < 1.

Finally, we have that κvw solves the equation

−|vA|+
δ/3

1− δ
[
κvwwA − |vA| − |vA|

]
= 0,

so that

κvw =

1−2δ/3
δ/3
|vA|+ |vA|
wA

.

By Proposition 4, the optimal contract with commitment is not individually rational for the

principal if and only if

−κvw|wP |+
δ/3

1− δ
[
vP + vP − κvw|wP |

]
< 0,

rewritten as

κvw >
δ/3

1− 2δ/3

vP + vP
|wP |

.
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The optimal contract without commitment will feature piecewise constant probabilities.

Furthermore, if the project process is iid, it can be shown that these probabilities will have the

following property: for any u ∈ U , if κuv < 1, then κuv = 0. Recall that with commitment, the

fact that v � v � w implies that for any v ∈ {v, v}, if κvv
′
< 1, then κvw = 1. As we will show,

this last property is not robust to the absence of commitment: there can be a gap in terms

of comparative advantage between those projects that the principal demands and those that

she supplies as favours. This gap increases the marginal return of supplying additional favours

(which, again, is measured in comparative advantage against those favours that are demanded)

and mitigates the principal’s commitment problem. Note that this makes precise how the scale

and scope of production is affected by the principal’s inability to commit.

We will provide a heuristic construction of the optimal contract without commitment. The

first question is: starting from the optimal contract with commitment, can the principal’s in-

dividual rationality constraint conditional on ut = w be slackened by reducing the production

probability of supplied favour w? However, to satisfy the agent’s most stringent individual

rationality constraint, which follows a demand for favour v, any such change must to be accom-

panied by a decrease in the demand for favour v. Specifically, given any reduced probability

kvw ≤ κvw in the supply of favour w, the reduced probability kvv ≤ 1 in the demand for favour

v must solve

−|vA|+
δ/3

1− δ
[
kvwwA − |vA| − kvv|vA|

]
= 0,

so that

kvv =
−1−2δ/3

δ/3
|vA|+ kvwwA

|vA|
. (10)

Given any history with ut = w, the principal’s payoff is

UP,t = −kvw|wP |+
δ/3

1− δ
[
vP + kvvvP − kvw|wP |

]
,

which, after substituting (10), can be rewritten as

UP,t =
δ/3wA
1− δ

kvw
[
vP
|vA|
− 1− 2δ/3

δ/3

|wP |
wA

]
+

δ/3|vA|
1− δ

[
vP
|vA|
− 1− 2δ/3

δ/3

vP
|vA|

]
(11)

Because the optimal contract without commitment is not individually rational for the principal,

we know that UP,t < 0 if kvw = κvw and kvv = 1. Furthermore, we have that ∂/∂kvwUP,t < 0 if
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and only if

vP
|vA|

<
1− 2δ/3

δ/3

|wP |
wA

. (12)

Recall that because v � w, we have that
vP
|vA|

> |wP |
wA

. Therefore, conditional on ut = w, the

principal is made better off by reducing her supply of favours even if she must also decrease

her demand for v as long as the comparative advantage the v has over w is not too great. It

is important to note that even if the operation just described increases the principal’s payoff

conditional on ut = w, it nevertheless reduces her initial (time 1) expected payoff. The reason is

that her initial expected payoff depends on her payoff conditional on ut = v and ut = v, because

the principal supplies favours only after having demanded some favour.

When (12) fails, it follows that absence of commitment leads to a complete breakdown

of production: the optimal contract without commitment specifies that the principal never

demands or supplies any favours. This breakdown is particularly striking because in this case

the optimal contract with commitment maximises the principal’s payoff conditional on ut = w.

However, even this most beneficial contract cannot compensate her for the supply of favour w.

This case occurs if δ is sufficiently high.

When (12) is satisfied, there is a tension between the principal’s ex ante and ex post incentives

to trade the demand of favour v against the supply of favour w: she benefits from such trades

when demanding favours, but suffers losses from them when it comes time to supply the favours.

Let kvw be such that kvv = 1 and kvv = 0, and note that (10) implies that

kvw =
1− 2δ/3

δ/3

|vA|
wA

.

Let UP,t denote the principal’s payoff from a history with ut = w given kvv = 1, kvv = 0 and

kvw = kvw. If we have that UP,t ≥ 0, then the optimal contract without commitment must have

kvv = 1, kvv ≥ 0 and kvw ≥ kvw, with kvv and kvw chosen such that UP,t = 0. In words, starting

from the optimal contract with commitment, the principal reduces the probability with which

she supplies favour w and demands favour v until her individual rationality constraint binds. In

this case, the absence of commitment does not affect the set of projects that are produced, but

the scale of production is reduced: whereas the optimal contract with commitment traded the

demand for favour v against the supply of favour w until all gains from trade were exhausted,

the optimal contract without commitment must sacrifice some of these gains to counter the

principal’s ex post resistance to supplying favour w with high probabilities. The condition that
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UP,t ≥ 0 can be computed from (11) to yield

vP
|vA|

≥
[

1− 2δ/3
δ/3

]2 |wP |
wA

. (13)

For the optimal contract without commitment to involve some production of project v, it must

be the case that demanding favour v in the future compensates the principal for the supply of

favour w. Therefore, condition (13) requires that project v has a sufficiently large comparative

advantage over project w. Note that (13) is always satisfied for large δ, while it fails for low δ.

Finally, if (12) is satisfied but (13) fails, then the principal’s individual rationality constraint

can only be met if she gains by trading a reduction of her supply of project w against a reduction

of her demand for project v. That is, if favours are traded in the optimal contract without

commitment, then this contract must be such that kvv = 0 and kvv, kv,w > 0. In this case, the

agent’s payoff conditional on ut = v must satisfy

−kvv|vA|+
δ/3

1− δ
[
kvwwA − kvv|vA|

]
= 0,

so that

kvv = kvw
[

δ/3

1− 2δ/3

]
wA
|vA|

. (14)

For any history with ut = w, the principal’s payoff is

UP,t = −kvw|wP |+
δ/3

1− δ
[
kvvvP − kvw|wP |

]
,

which, after substituting (14), can be rewritten as

UP,t = kvwwA
[δ/3]2

1− 2δ/3

[
vP
|vA|
−
[

1− 2δ/3
δ/3

]2 |wP |
wA

]
.

Because (13) is assumed to fail, there is no value of kvw > 0 for which UP,t ≥ 0. It follows that

the optimal contract without commitment in this case also leads to a breakdown in production,

as it must specify that the principal never demands or supplies any favours. In other words, if

the principal cannot be incentivised to supply favour w through future demands for the highest-

ranked favour v (which is what the failure of (13) indicates), then reducing her supply of favours

starting from the contract with kvv = 1 and kvv = 0, with the corresponding decrease in her

demands for v, cannot increase her payoffs conditional on ut = w.
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To recap, if the principal’s individual rationality constraint fails under the optimal contract

with commitment, then whether or not production can be supported without commitment

depends on (i) project v not being too highly ranked in comparative advantage relative to w

and (ii) project v being highly enough ranked relative to w. When these conditions hold, the

optimal contract without commitment induces a wedge (in terms of comparative advantage)

between those projects that are demanded and supplied as favours: this contract prioritises the

trades that make the principal better off ex post (v against w) and compresses the trades that

make the principal worse off (v against w). All the output loss due to the principal’ inability

to commit is concentrated on those projects involved in the latter trades.

Example 5. In Example 4, the principal’s inability to commit drove a wedge between those

projects that she demanded as favours and those projects that she supplied as favours. However,

project selection decisions were still determined by their ranking in comparative advantage. In

particular, project v was never demanded as a favour if opportunities to demand higher-ranked

project v were still available. In this example we show that this property only arises if the

project process is iid. If project opportunities are persistent, then the principal’s inability to

commit can also lead to lower-ranked projects being either demanded or supplied as favours

ahead of higher-ranked projects.

Fix 0 < ε < 1 and suppose that pvv = 1 − ε, pvw = ε, and puu′ = 1/2 for all u, u′ ∈ {v, w}.
Suppose further that u1 = v. In words, the initial project v is persistent, but after the first

transition to project w, the project process alternates independently between v and w thereafter.

It can be computed that if

1

1− δ(1− ε)

[
−|vA|+ δε

[
1− δ/2

1− δ

]
wA

]
< 0, (15)

then it follows that with commitment, the optimal contract with piecewise constant probabilities

is such that κvv < 1, κvw = 1 and κvv = 0. That is, favour v is never demanded while favour

w is always supplied. Clearly, this contract is not individually rational for the principal at any

history with ut = w.

In what follows, we provide a heuristic derivation of the optimal contract without commit-

ment for a specific region of the parameter space. Namely, we assume that

vP
|vA|

>

[
1− δ/2
δ/2

]2 |wP |
wA

. (16)

First, note that in any piecewise constant contract without commitment in which some pro-

duction occurs, it must be that kvw > 0, which in turn implies that kvv > 0. Second, under

30



condition (16), it must be that any optimal contract without commitment must have either

kvw = 1 or kvv = 1. That is, we claim, given any contract with kvw, kvv < 1, that there exists

an alternative contract with k′vw > kvw and k′vv > kvv that Pareto-dominates it. To see this,

the agent’s payoff from kvw and kvv conditional on ut = v is given by

UA,t = −kvv|vA|+
δ/2

1− δ
[
−kvv|vA|+ kvwwA

]
,

which can be rearranged to yield

kvv = kvw
δ/2

1− δ/2

wA
|vA|
− 1− δ

1− δ/2

UA,t
|vA|

. (17)

The principal’s payoff conditional on ut = w is given by

UP,t = −kvw|wP |+
δ/2

1− δ
[
−kvw|wP |+ kvvvP

]
,

which, after substituting (17), can be rearranged to yield

UP,t =
[δ/2]2wA

(1− δ)(1− δ/2)
kvw

[
vP
|vA|
−
[

1− δ/2
δ/2

]2 |wP |
wA

]
−

δ/2

1− δ/2

vP
|vA|

UA,t. (18)

Therefore, given (16), it can be seen from (17) and (18) that there exist k′vw and k′vv that yield

payoff UA,t to the agent following histories with ut = v and payoff U ′P,t > UP,t to the principal

following histories with ut = w, as desired. In words, condition (16) ensures that projects v

has a sufficient edge in comparative advantage over project w that exchanging the production

of v against the production of w generates gains from trade for both the principal and the

agent. Note also that this claim ensures that under condition (16) the optimal contract without

commitment involves positive levels of production of both projects v and w, that is, kvw > 0

and kvv > 0. The remaining question is whether this contract involves the production of project

v. Third, it must be the case that in any optimal contract without commitment, we have that

UP,t = 0 given any history with ut = w. To see this, suppose that UP,t > 0. Since kvv > 0,

we must have that kvv = 1, as otherwise the principal would gain by reducing the demand for

favour v and increasing the demand for favour v, keeping the agent indifferent conditional on

ut = v (and hence increasing the agent’s payoff conditional on ut = v). However, such a contract

cannot satisfy the agent’s individual rationality constraint conditional on ut = v: by (15), even

if kvw = 1, the agent’s payoff conditional on ut = v would be such that UA,t < 0.

Our claims above leave two cases for the optimal contract without commitment. In the
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first case, the optimal contract is such that kvw < 1, and then we must have that kvv = 1 and

UP,t = 0 conditional on ut = w. Because kvw > 0 and UP,t = 0, from (18) we have that UA,t > 0

conditional on ut = v, which, because we must have that UA,t = 0 conditional on ut = v, implies

that kvv > 0. In the second case, the optimal contract without commitment has kvw = 1, and

then we must have that 0 < kvv ≤ 1 and UP,t = 0 conditional on ut = w. It also follows from

(18) that UA,t > 0 conditional on ut = v, so that again we have that kvv > 0.

We know from our claims above that the optimal contract without commitment will maxi-

mise the level of production conditional on ut = w subject to UP,t = 0. The two possible cases

for this contract differ only in the levels of production for projects v and w that achieve this

balance between production and the principal’s incentives: in the first case, the principal always

demands favour v but supplies favour w with interior probability and in the second case she

always supplies favour w but demands favour v with interior probability. In the first case, the

principal supplies favour w with a lower probability than with commitment and cannot parti-

cipate in any additional production of this project without violating her individual rationality

constraint. In the second case, the principal demands favour v even if she never demands it

with commitment, and she cannot reduce the production of this project without violating her

individual rationality constraint. In both cases, these distortions imply that 0 < kvv < 1: while

there is production of project v, it occurs with a lower probability without commitment than in

the optimal contract with commitment. To recap, in this example the absence of commitment

not only leads to a decrease in production, but it also spells the end of the comparative advan-

tage ranking as the sole guide to optimal project selection: at a cost to gains from trade, the

production of v, which is needed to provide the principal with the incentives to supply favours

to the agent, crowds out the production of v.

7 Conclusion

In this paper, we have that in a dynamic model of joint production the principal’s incentives for

project selection lead to contracts whose terms of trade favour the agent over time. Specifically,

this involves frontloading the production of projects that benefit the principal and backloading

the production of projects that benefit the agent. This result obtains irrespective of the process

that drives joint project opportunities, and we have also shown it to be robust to the inclusion of

monetary transfers between the parties. Finally, while our characterisation of optimal contracts

is not robust to the absence of commitment by the principal, our examples make clear that

the principal’s incentives for concentrating production on projects that are highly ranked by

comparative advantage is still the key driving force without commitment, although in this case
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the scale and scope of production is reduced and the principal’s individual rationality constraints

can lead to non-monotonicity in the terms of optimal contracts. In sum, the dynamic project

selection decisions highlighted by our results are robust.

A Proofs

Proof of Lemma 1. Suppose, towards a contradiction, that κ∗ is optimal and that, for some

project history ut such that uP,t, uA,t > 0, we have that κ∗t < 1. Fix a contract κ̃ that is

identical to κ∗ except that κ̃t = 1 at ut. It follows that κ̃ is individually rational because κ∗ is

individually rational. Furthermore, ŨP,t > U∗P,t, yielding the desired contradiction. The proof

for the case of ut such that uP,t, uA,t < 0 is similar, and is omitted.

Proof of Propositions 1 and 2. As noted in the text, we divided the exposition of our charac-

terisation of optimal contracts into a first part, which states their back/frontloading properties

(Proposition 1), and a second part, which states their rules for project selection (Proposition

2). However, it is more natural to prove these results jointly. We proceed in a number of steps.

Claims for the Optimal Supply of Favours

Step 1. Fix and optimal contract κ∗, project history ut, its superhistories ut
′

and ut
′′
, and

projects w � w. Suppose that (i) ut′ = w and (ii) ut′′ = w and
∑t′′

s=t κ
∗
sIus∈D = 0.12 We show

that

if κ∗t′ < 1, then κ∗t′′ = 0.

To see this suppose, towards a contradiction, that κ∗t′ < 1 at ut
′

and that κ∗t′′ > 0 at ut
′′
. Now

consider an alternative contract κ̃, identical to κ∗ except that (i) κ∗t′ < κ̃t′ ≤ 1 at ut
′
, (ii)

0 ≤ κ̃t′′ < κ∗t′′ at ut
′′

and (iii)

ŨA,t − U∗A,t = δt
′−tPt(ut

′
)[κ̃t′ − κ∗t′ ]wA − δt

′′−tPt(ut
′′
)[κ∗t′′ − κ̃t′′ ]wA = 0. (19)

Such a contract always exists, and furthermore κ̃ is individually rational for the agent. To see

this, first note that, because ŨA,t = U∗A,t ≥ 0, we have that κ̃ satisfies (IRA,r) for all times

r ≤ t. Second, because ŨA,t′ > U∗A,t′ ≥ 0, it follows that given any time r > t and history ur

that is not a subhistory of ut
′′
, we have that ŨA,r ≥ U∗A,r ≥ 0. Third, even though we have that

12Throughout,
∑t′′

s=t κ
∗
sIus∈D = 0 denotes that, given history ut and its superhistory ut

′′
, κ∗s = 0 for any

history us with us ∈ D that is superhistory of ut and a subhistory of ut
′′
.

33



ŨA,t′′ < U∗A,t′′ , because κ̃t′′ ≥ 0 it also follows that

ŨA,t′′ ≥ δEt′′U∗A,t′′+1

≥ 0.

Finally, given time r > t and history ur which is a subhistory of ut
′′
, the fact that

∑t′′

s=t κ
∗
sIus∈D =

0 implies that

ŨA,r ≥ δt
′′−rPr(ut

′′
)ŨA,t′′

≥ 0.

It remains only to note that, by (19), we have

ŨP,t − U∗P,t = −δt′−tPt(ut
′
)[κ̃t′ − κ∗t′ ]|wP |+ δt

′′−tPt(ut
′′
)[κ∗t′′ − κ̃t′′ ]|wP |

= δt
′′−tPt(ut

′′
)[κ∗t′′ − κ̃t′′ ]|wP |

[
1−

|wP |/wA
|wP |/wA

]
> 0,

where the inequality follows because w � w, contradicting the optimality of κ∗.

Step 2. Step 1 implies that to any optimal contract κ∗ corresponds a history-dependent threshold

project mapping W : H → S such that, for all times t and histories ut, if ut ∈ S, then

κ∗t =

1 if Wt � ut,

0 if ut � Wt,

where for simplicity we denote W (ut) by Wt, with the project history understood. Further-

more, Wt is non-decreasing (with respect to �), and is such that, given any history ut and its

superhistory ut
′
, Wt′ = Wt if

∑t′

s=t+1 κ
∗
sIus∈D = 0. The threshold is given by

W (ut) = max
�

{
w ∈ S : Pt(κ∗t′ > 0, ut′ = w,

∑t′

s=t+1
κ∗sIus∈D = 0) > 0

}
,

if this is well-defined, and by

Wt = min
�
S,
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otherwise.13

Step 3. Step 2 does not determine the optimal contracts at times t when ut = Wt. We now

show that, without loss of generality for optimal payoffs, we can restrict attention to contracts

with the property that, given any history ut and its superhistory ut
′

at which ut′ = Wt and∑t′

s=t+1 κ
∗
sIus∈D = 0, there exists time T̂ such that κ∗t′ = 1 if and only if t′ ≥ T̂ . More precisely,

fix an optimal contract κ∗ and history ut, and consider an alternative contract κ̂, identical to

κ∗ except that, at all superhistories ut
′

of ut with
∑t′

s=t+1 κ
∗
sIus∈D = 0 and ut′ = Wt,

κ̂t′ =


1 if T̂ ≤ t′,

t′ + 1− T̂ if t < T̂ < t+ 1,

0 if T̂ ≥ t′ + 1.

Note that ÛA,t ≥ U∗A,t if T̂ = t. Also, limT̂→∞ ÛA,t ≤ U∗A,t. By continuity of ÛA,t in T̂ , there

exists some T̃ ≥ t such that ŨA,t = U∗A,t. Also, note that

ŨP,t − U∗P,t = |WP,t|E

[∑
t′≥t

δt
′−t[κ∗t′ − κ̃t′ ]

]

=
|WP,t|
WA,t

[
U∗A,t − ŨA,t

]
= 0.

To verify that κ̃ is individually rational for the agent, first note that ŨA,r = U∗A,r ≥ 0 either if

(i) r ≤ t or if (ii) r > t and history ur is not a superhistory of ut with
∑r

s=t+1 κ
∗
sIus∈D = 0.

Second, given any superhistory ur of ut with
∑r

s=t+1 κ
∗
sIus∈D = 0 and r > T̂ , then, because

κ̃suA,s ≥ κ∗suA,s for all s ≥ r, it follows that ŨA,r ≥ U∗A,r ≥ 0. Third, given any superhistory ur

of ut with
∑r

s=t+1 κ
∗
sIus∈D = 0 and r ≤ T̂ , then, by the previous point and because κ̃ruA,r ≥ 0,

it follows recursively that

ŨA,r ≥ δErŨA,r+1

≥ 0.

The last point is to establish that the procedure above, which modifies κ∗ at a single history

in a payoff-invariant way, can be extended simultaneously to all histories. We do this in Step 7

13Throughout, Pt(κ
∗
t′ > 0, ut′ = w,

∑t′

s=t+1 κ
∗
sIus∈D = 0) > 0 denotes that, given history ut, the set of its

superhistories ut
′

such that κ∗t′ > 0, ut′ = w and
∑t′

s=t+1 κ
∗
sIus∈D = 0 has positive probability.
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below. Therefore, this step defines a history-dependent time threshold TWt
t for each history ut.

By construction, for any history ut and its superhistory ut
′
with ut′ = Wt and

∑t′

s=t+1 κ
∗
sIus∈D = 0

(and hence Wt′ = Wt), we have that TWt
t = T

Wt′
t′ .

Step 4. Step 3 defines a history-dependent time threshold TWt
t for each history ut. We now

show that, without loss of generality for optimal payoffs, we can restrict attention to contracts

with the property that, given any history ut and any superhistory ut
′

such that Wt = Wt′ , we

have that TWt
t ≥ T

Wt′
t′ . By Step 3, given ut, if Pt(κ∗t′ > 0, ut′ = Wt,

∑t′

s=t+1 κ
∗
sIus∈D = 0) = 0,

then TWt
t = ∞, and the claim is true. Therefore, in what follows we assume that, given ut,

Pt(κ∗t′ > 0, ut′ = Wt,
∑t′

s=t+1 κ
∗
sIus∈D = 0) > 0.

Fix time t and history ut, and let T t = sup{TWt′
t′ : t′ ≥ t, ut′ = Wt = Wt′}. It is possible,

without loss of generality for optimal payoffs, to assume that T t < ∞. To see this, consider

an alternative contract κ̂, identical to κ∗ except that, given any superhistory ut
′

of ut with

Wt = Wt′ , (i) T̂
Wt′
t′ = T̂ if

∑t′

s=t+1 κ
∗
sIus∈D = 0, and (ii) T̂

Wt′
t′ = min{TWt′

t′ , T̂} if
∑t′

s=t+1 κ
∗
sIus∈D >

0. We have that ÛA,t ≥ U∗A,t if T̂ = t, and limT̂→∞ ÛA,t < U∗A,t because Pt(κ∗t′ > 0, ut′ =

Wt,
∑t′

s=t+1 κ
∗
sIus∈D = 0) > 0. By continuity, there exists T̃ <∞ such that ŨA,t = U∗A,t, as well

as ŨP,t = U∗P,t. To verify that contract κ̃ is individually rational for the agent, first note that

ŨA,r = U∗A,r ≥ 0 unless history ur is a superhistory of ut with Wr = Wt. Second, by construction

of κ̃, ŨA,r ≥ U∗A,r ≥ 0 for any superhistory ur of ut with r ≥ T̃ and Wr = Wt as well as for

any superhistory ur of ut with t < r < T̃ , Wr = Wt and
∑r

s=t+1 κ
∗
sIus∈D > 0. Third, given any

superhistory ur of ut with t < r < T̃ , Wr = Wt and
∑r

s=t+1 κ
∗
sIus∈D = 0, then, by the previous

points and because κ̃ruA,r ≥ 0, it follows recursively that

ŨA,r ≥ δErŨA,r+1

≥ 0.

Now consider an alternative contract κα, identical to κ∗ except that, given any superhistory

ut
′

of ut with Wt = Wt′ , (i) T
α,Wt′
t′ = (1 − α)T t + αt if

∑t′

s=t+1 κ
∗
sIus∈D = 0, and (ii) T

α,Wt′
t′ =

(1− α)T
Wt′
t′ + αt if

∑t′

s=t+1 κ
∗
sIus∈D > 0. This contract is well-defined because T t <∞. Notice

that Uα=0
A,t ≤ U∗A,t and that Uα=1

A,t ≥ U∗A,t. By continuity, there exists α̃ ∈ [0, 1] such that

U α̃
A,t = U∗A,t, as well as U α̃

P,t = U∗P,t. Note that, by construction, because T t ≥ T
Wt′
t′ , κα̃ is such

that T α̃,Wt
t ≥ T

α̃,Wt′
t′ whenever t′ > t and Wt′ = Wt. The proof that κα̃ is individually rational

for the agent is almost identical to that of the previous paragraph for the contract κ̃, and is

omitted.

Step 5. We use this step to prove the one that follows. Fix an optimal contract κ∗, project

history ut−1, its superhistories ut and ut
′
, a superhistory ut

′′
of ut, and projects w � w. Suppose
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that (i) ut′ = w, and (ii) ut′′ = w and
∑t′′

s=t+1 κ
∗
sIus∈D = 0. We show that if U∗A,t > 0 at ut, then

if κ∗t′ < 1, then κ∗t′′ = 0.

To see this suppose, towards a contradiction, that κ∗t′ < 1 at ut
′

and that κ∗t′′ > 0 at ut
′′
. Now

consider an alternative contract κ̃, identical to κ∗ except that (i) κ∗t′ < κ̃t′ ≤ 1 at ut
′
, (ii)

0 ≤ κ̃t′′ < κ∗t′′ at ut
′′
, (iii) ŨA,t ≥ 0 and (iv)

ŨA,t−1 − U∗A,t−1 = δt
′−(t−1)Pt−1(ut

′
)[κ̃t′ − κ∗t′ ]wA − δt

′′−(t−1)Pt−1(ut
′′
)[κ∗t′′ − κ̃t′′ ]wA = 0. (20)

Such a contract always exists, and furthermore κ̃ is individually rational for the agent. To see

this, first note that, because ŨA,t−1 = U∗A,t−1 ≥ 0, we have that κ̃ satisfies (IRA,r) for all times

r ≤ t − 1. Second, ŨA,t ≥ 0 so that κ̃ satisfies (IRA,t). Third, κ̃ satisfies (IRA,r) for all times

r > t. This follows by an argument similar to the one in Step 1 and is omitted.

Finally, an argument as in Step 1 shows that (20) and the fact that w � w imply that

ŨP,t−1 − U∗P,t−1 > 0, yielding the desired contradiction.

Step 6. We show that, without loss of generality for optimal payoffs, we can restrict attention

to contracts κ∗ such that, given any time t, if either (i) Wt � Wt−1 or (ii) Wt = Wt−1 and

T
Wt−1

t−1 > TWt
t , then U∗A,t = 0. To see part (i) of this claim, suppose, towards a contradiction,

that there exist project history ut−1 and its superhistory ut such that Wt � Wt−1 and U∗A,t > 0.

Because Wt � Wt−1, Step 2 implies that ut ∈ D, κ∗t > 0 and

Pt
(
κ∗t′′ > 0, ut′′ = Wt,

∑t′′

s=t+1
κ∗sIus∈D = 0

)
> 0 (21)

so that there exists superhistory ut
′′

of ut with ut′′ = Wt,
∑t′′

s=t+1 κ
∗
sIus∈D = 0 and κ∗t′′ > 0.

We now make two claims. First, we claim that project w ∈ S such that Wt � w � Wt−1

does not exist. Suppose it does, then, by Step 2,

Pt−1
(
κ∗t′ > 0, ut′ = w,

∑t′

s=t
κ∗sIus∈D = 0

)
= 0

so that there exists a superhistory ut
′

of ut−1 with ut′ = w and κ∗t′ = 0, which, by Step 5 and

(21), is a contradiction because Wt � w. Second, we claim that

Pt−1
(
κ∗t′ < 1, ut′ = Wt−1,

∑t′

s=t
κ∗sIus∈D = 0

)
= 0.

If not then there exists superhistory ut
′

of ut−1 with ut′ = Wt−1 and κ∗t−1 < 1, which, by Step 5
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and (21), is a contradiction because Wt � Wt−1.

Now consider the alternative contract κα,β, identical to κ∗ except that (i) T
α,β,Wt′
t′ = β ≥ t

for all superhistories ut
′

of ut with Wt′ = Wt and
∑t′

s=t+1 κ
∗
sIus∈D = 0 and (ii) Wα,β

t′′ = Wt

and Tα,β,Wt

t′′ = α ≥ t for all superhistories ut
′′

of ut−1 with
∑t′′

s=t κ
∗
sIus∈D = 0. We have that

U t,t
A,r ≥ U∗A,r and limα,β→∞ U

α,β
A,r ≤ U∗A,r for r = t − 1, t. By continuity, there exist β̃ ≤ α̃ < ∞

such that U α̃,β̃
A,t−1 = U∗A,t−1 and U α̃,β̃

P,t−1 = U∗P,t−1, and either (a) U α̃,β̃
A,t = 0 and β̃ ≤ α̃ or (b)

U α̃,β̃
A,t > 0 and β̃ = α̃, which implies W α̃,β̃

t−1 = W α̃,β̃
t by the two claims above.

Contract κα̃,β̃ is clearly individually rational for the agent at all times r ≤ t. The proof that

contract κα̃,β̃ is individually rational for the agent at all times r > t is similar to those of Steps

3 and 4, and is omitted. Finally, the proof of part (ii) of the claim is similar, and is omitted.

Step 7. The payoff-equivalent modifications operated on optimal contract κ∗ described in Steps

3-6 were constructed history by history. Note that any contract can be identified with a point

in [0, 1]∞, a compact set in the product topology. Therefore, given an optimal contract κ∗,1, we

can construct a sequence {κ∗,n}n≥1 in [0, 1]∞ such that (i) for each n, κ∗,n+1 is obtained from

κ∗,n by some operation from Steps 3-6 at some history and (ii) given any time t, there exists

N such that, for all n ≥ N , κ∗,nt′ = κ∗,Nt′ for all histories ut
′

with t′ ≤ t. This sequence must

then have a subsequence converging to κ∗, some optimal contract satisfying all the properties

of Steps 3-6.

Step 8. Given any time t and associated threshold project Wt as defined in Step 2, we have

defined in Steps 3-7 a time threshold TWt
t that respects the conditions of Proposition 1. Now

given any w � Wt, define Twt =∞, and given any Wt � w, define

Twt =

min{TWt′
t′ : ut

′
is a subhistory of ut and w = Wt′} if this is well-defined,

min{t′ : ut′ is a subhistory of ut and Wt′ � w} otherwise.

Note that because, by Step 2, W is non-decreasing (with respect to �), and because, by Steps

4 and 6, TWt
t is non-increasing in t, our construction ensures that, for each w ∈ S, the threshold

Twt is non-increasing in t.

Step 9. Let w = min� S. We show that given an optimal contract κ∗, we have that Twt =∞ if∑t
s=1 κ

∗
sIus∈D = 0. To see this, suppose that there exists a history ut with

∑t
s=1 κ

∗
sIus∈D = 0 and,

towards a contradiction, Twt < ∞. Consider an alternative contract κ̃, identical to κ∗ except

that κ̃t′ = 0 at all histories ut
′

with ut′ ∈ S and
∑t′

s=1 κ
∗
sIus∈D = 0. To see that κ̃ is individually

rational for the agent, first note that if
∑r

s=1 κ
∗
sIus∈D > 0 for some r, then ŨA,r = U∗A,r ≥ 0.

Second, if
∑r

s=1 κ
∗
sIus∈D = 0 for some r, then, because κ̃ruA,r ≥ 0, it follows recursively by the
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previous point that we have

ŨA,r ≥ δErU∗A,r+1

≥ 0.

Finally, we have that ŨP,1 > U∗P,1, yielding the desired contradiction.

Claims for the Optimal Demand for Favours

Step A. Fix optimal contract κ∗, project history ut, its superhistory ut
′
, and projects v � v.

Suppose that (i) ut = v and (ii) ut′ = v. We show that

if κ∗t < 1, then κ∗t′ = 0.

To see this suppose, towards a contradiction, that κ∗t < 1 at ut and that κ∗t′ > 0 at ut
′
. Now

consider an alternative contract κ̃, identical to κ∗ except that (i) κ∗t < κ̃t ≤ 1 at ut, (ii)

0 ≤ κ̃t′ < κ∗t′ at ut
′
, and (iii)

ŨA,t − U∗A,t = − [κ̃t − κ∗t ] |vA|+ δt
′−tPt(ut

′
) [κ∗t′ − κ̃t′ ] |vA| = 0. (22)

Note that contract κ̃ satisfies (IRA,r) at all times r ≤ t. To show that κ̃ satisfies (IRA,r) at all

times r > t, we proceed recursively. First note that we have that ŨA,r = U∗A,r ≥ 0 whenever (i)

ur is not a superhistory of ut or (ii) r > t′. Second, at history ut
′
, we have that κ̃t′uA,t′ > κ∗t′uA,t′ ,

so that, by the previous point, ŨA,r > U∗A,r ≥ 0. Third, given any superhistory ur of ut with

t < r < t′, the previous points ensure that ŨA,r ≥ 0. Finally, an argument as in Step 1 shows

that (22) and the fact that v � v imply that ŨP,t−U∗P,t > 0, yielding the desired contradiction.

Step B. Step A does not restrict optimal contracts at history ut and its superhistory ut
′

if

ut = ut′ ∈ D. We now show that, without loss of generality for optimal payoffs, we can restrict

attention to contracts with the property that, for such histories, if κ∗t′ > 0, then κ∗t = 1. To see

this, fix optimal contract κ∗, history ut and project v, and suppose that ut = v and κ∗t < 1.

Now consider an alternative contract κ̃, identical to κ∗ except that

κ̃t =

κ∗t + Et
[∑

s≥t+1 δ
s−tκ∗sIus=v

]
if κ∗t + Et

[∑
s≥t+1 δ

s−tκ∗sIus=v
]
≤ 1,

1 otherwise,
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and that, for any superhistory ut
′

of ut with ut′ = v,

κ̃t′ =


0 if κ∗t + Et

[∑
s≥t+1 δ

s−tκ∗sIus=v
]
≤ 1,[

1− 1−κ∗t
Et[

∑
s≥t+1 δ

s−tκ∗sIus=v]

]
κ∗t′ otherwise.

Note that such a contract always exists, and that, by construction,

ŨA,t − U∗A,t = |vA|

[
− [κ̃t − κ∗t ] + Et

[∑
s≥t+1

δs−tIus=v [κ∗s − κ̃s]

]]
= 0

= ŨP,t − U∗P,t.

Furthermore, for any superhistory ut
′

of ut with ut′ = v, we have that either (i) κ̃t = 1 and

κ̃t′ ≥ 0, or (ii) κ̃t < 1 and κ̃t′ = 0. Note that contract κ̃ satisfies (IRA,r) for all r ≤ t. To see

that κ̃ satisfies (IRA,r) at all r > t, note that because κ̃r ≤ κ∗r for all superhistories ur of ut, it

follows that κ̃ruA,r ≥ κ∗ruA,r for all r > t, and hence ṼA,r ≥ V ∗A,r ≥ 0.

Step C. The procedure from Step B, which modifies contract κ∗ at a single history in a payoff-

invariant way, can be extended simultaneously to all histories as in Step 7.

Step D. Given an optimal contract κ∗ along with any v ∈ D and any history ut, define

t
v

= sup{t′ : ut′ is a subhistory or superhistory of ut, vt′ = v and κ∗t′ > 0}

if this is well-defined and t
v

=∞ otherwise, as well as

T vt =

t
v

+ κ∗
t
v if t

v
<∞,

∞ otherwise.

By construction, the resulting time thresholds {T vt }v∈D are non-increasing. Furthermore, by the

results of Steps A-C, it follows that, for all t,

κ∗t =


1 if T vtt ≥ t+ 1,

T vtt − t if t < T vtt < t+ 1,

0 if T vtt ≤ t.

Step E. Fix optimal contract κ∗ and project history ut such that vt � W t−1. We show that

κ∗t > 0. Suppose, towards a contradiction, that κ∗t = 0. Then by Part 1 of Proposition 1 (which
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we have established), at superhistory ut+1 of ut with ut+1 = W t−1, T
W t−1

t+1 = T
W t−1

t−1 > t+ 1 and

hence κ∗t+1 < 1. Now consider an alternative contract κ̃, identical to κ∗ except that (i) κ̃t > 0,

(ii) κ∗t+1 < κ̃t+1 ≤ 1 and (iii) ŨA,t = U∗A,t. Such a contract always exists. To see that κ̃ is

individually rational for the agent, first note that it is individually rational for the agent at all

histories except at ut+1. Second, for ut+1, because κ̃t+1uA,t+1 ≥ 0, it follows recursively by the

previous point that we have

ŨA,t+1 ≥ δEt+1U
∗
A,t+2

≥ 0.

By (iii), we have that

ŨA,t − U∗A,t = −κ̃t|vA,t|+ δWA,t−1
[
κ̃t+1 − κ∗t+1

]
Pt
(
ut+1 = W t−1

)
= 0.

(23)

But then, it follows that

ŨP,t − U∗P,t = κ̃tvP,t − δ
∣∣W P,t−1

∣∣ [κ̃t+1 − κ∗t+1

]
Pt
(
ut+1 = W t−1

)
= κ̃t|vA,t|

[
vP,t
|vA,t|

−
∣∣W P,t−1

∣∣
WA,t−1

]
> 0,

where the second equality follows from substituting (23) and the inequality follow because

vt � W t−1, contradicting the optimality of κ∗.

Step F. Fix optimal contract κ∗ and project history ut such that W t−1 � vt. We show that

κ∗t = 0. Suppose, towards a contradiction, that κ∗t > 0. Then by Part 2 of Proposition 1 (which

we have established), at superhistory ut+1 of ut with ut+1 = W t−1, T
W t−1

t+1 ≤ T
W t−1

t−1 < t + 2

and hence κ∗t+1 > 0. Now consider an alternative contract κ̃, identical to κ∗ except that (i)

0 ≤ κ̃t < κ∗t , (ii) 0 ≤ κ̃t+1 < κ∗t+1 and (iii) ŨA,t = U∗A,t. Such a contract always exists and that

κ̃ is individually rational for the agent follows by an argument as in Step E. By (iii), we have

that

ŨA,t − U∗A,t = [κ∗t − κ̃t] |vA,t| − δWA,t−1
[
κ∗t+1 − κ̃t+1

]
Pt
(
ut+1 = W t−1

)
= 0.

(24)
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But then, it follows that

ŨP,t − U∗P,t = − [κ∗t − κ̃t] vP,t + δ
∣∣W P,t−1

∣∣ [κ∗t+1 − κ̃t+1

]
Pt
(
ut+1 = W t−1

)
= [κ∗t − κ̃t] |vA,t|

[∣∣W P,t−1
∣∣

WA,t−1
− vP,t
|vA,t|

]
> 0,

where the second equality follows from substituting (24) and the inequality follow because

W t−1 � vt, contradicting the optimality of κ∗.

Proof of Proposition 3. We proceed in a number of steps.

Step 1. Fix project v′ ∈ D and suppose that u1 = v′. We define the reduced problem

max
κ∈K

UP,1 subject to UA,1 ≥ 0. (25)

First, note that a standard argument establishes that U∗A,1 = 0 at any solution to (25). Second,

note that problem (25) only requires individual rationality at t = 1. Therefore, if the solution

to (25) also satisfies (IRA,t) at all times t > 1, then it must be part of an optimal contract

conditional on u1 = v′.

Step 2. We show that there exists a solution κ∗ to (25) of the following threshold type: for each

v ∈ D, there exists T v ≥ 0 such that, given any history ut with ut = v,

κ∗t =


1 if T v ≥ t+ 1,

T v − t if t < T v < t+ 1,

0 if T v ≤ t,

and for each w ∈ S, there exists Tw ≥ 0 such that, given any history ut with ut = w,

κ∗t =


1 if Tw ≤ t,

t+ 1− Tw if t < Tw < t+ 1,

0 if Tw ≥ t+ 1.

The critical difference with the corresponding expressions with a general process u from Propo-

sition 1 is that the time thresholds ({T v}v∈D, {Tw}w∈S) are fixed and independent of histories.

The proof of this claim follows from arguments closely mirroring those of Steps 3 and C of

Proposition 1, and is omitted. In fact, these arguments are simplified in this case because the
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only individual rationality constraint for the agent in problem (25) is for the initial history.

Finally, we normalise these time thresholds so that (i) T v = 0 if and only if κ∗t = 0 for all

t ≥ 1 with ut = v, that is, if and only if the principal never demands favour v under κ∗, and

that (ii) Tw = 0 if and only if κ∗t = 1 for all t ≥ 1 with ut = w, that is, if the principal always

supplies favour w under κ∗.

Step 3. We show that there exists a solution to (25) with the following properties: there exist

v∗ ∈ D and w∗ ∈ S such that

1. T v = 0 if v∗ � v and T v =∞ if v � v∗.

2. Tw = 0 if w∗ � w and Tw =∞ if w � w∗.

3. Given any v ∈ D, if T v < ∞, then Tw = 0 for all v � w. Also, if T v > 0 then Tw = ∞
for all w � v.

The threshold projects are defined as

v∗ =

min�{v ∈ D : T v > 0} if well-defined,

max�D if T v = 0 for all v ∈ D,

and

w∗ =

max�{w ∈ S : Tw <∞} if well-defined,

min� S if Tw =∞ for all w ∈ S.

In words, v∗ is the worst project among those which the principal ever demands as a favour,

and w∗ is worst project among those the principal ever supplies as a favour (if applicable). Note

that Item 3 implies that if T v
∗
<∞, then Tw

∗
= 0, and that if Tw

∗
> 0, then T v

∗
=∞.

The proof of this claim follows from arguments closely mirroring those of Steps 1 and A of

Proposition 1, and is omitted. Again, these arguments are simplified in this case because the

only individual rationality constraint for the agent in problem (25) is for the initial history.

Step 4. Given v, v ∈ D, consider the associated solutions κ∗ and κ∗ to the problem (25) with

u1 = v and u1 = v, respectively. We show that if either

(i) v∗ � v∗ or (ii) v∗ = v∗ and T
v∗

< T v
∗
,

then either

(i) w∗ � w∗ or (ii) w∗ = w∗ and T
w∗ ≤ Tw

∗
.
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To see this, suppose that either (i) v∗ � v∗ or (ii) v∗ = v∗ and T
v∗

< T v
∗
. Note that, by

Item 1 in Step 3, we have in both cases (i) and (ii) that T
v ≤ T v for all v ∈ D, with at least

one inequality strict, so that, in words, the contract κ∗ is strictly more generous in terms of

what it demands from the agent than κ∗. Now suppose, towards a contradiction, that either

(i) w∗ � w∗ or (ii) w∗ = w∗ and Tw
∗
< T

w∗

. Note that, by Item 2 in Step 3, we have that

T
w ≥ Tw for all w ∈ S, with at least one inequality strict, so that, in words, the contract κ∗

is strictly more generous in terms of what it supplies to the agent than κ∗. First, let ṽ be such

that T
ṽ
< T ṽ, which by assumption must exist. Then, we have T

ṽ
< ∞ and T ṽ > 0. Second,

fix w̃ such that T
w̃
> T w̃, which by (our contradiction) assumption must exist. Then, we have

T
w̃
> 0 and T w̃ <∞. Third, T

ṽ
<∞ and T

w̃
> 0, by Item 3 of Step 3, implies w̃ � ṽ. Fourth,

T ṽ > 0 and T w̃ <∞, by Item 3 of Step 3, implies ṽ � w̃, yielding the desired contradiction.

Step 5. The previous point allows us to rank the solutions to (25) for various v′ ∈ D for which

u1 = v′ in terms of how generous they are to the agent. Specifically, fix v, v ∈ D and consider

the associated solutions κ∗ and κ∗ to the problem (25) with u1 = v and u1 = v, respectively.

If either (i) v∗ � v∗, or (ii) v∗ = v∗ and T
v∗

< T v
∗
, or (iii) v∗ = v∗, T

v∗

= T v
∗

and w∗ � w∗,

or (iv) v∗ = v∗, T
v∗

= T v
∗
, w∗ = w∗ and T

w∗

< Tw
∗
, then we say that the contract κ∗ is more

generous to the agent than contract κ∗. In words, Step 4 says that when these conditions are

met, then κ∗ demands less of every project v ∈ D, and supplies more of every project w ∈ S,

than κ∗. Fix any project u such that u1 = u. and let U i,1 denote the payoff to i from contract

κ∗, and U i,1 denote the payoff to i from contract κ∗. It follows that if κ∗ is more generous to

the agent than κ∗, then we have that UA,1 ≥ UA,1. An implication is that contract κ∗ must still

satisfy (IRA,1) if u1 = v, but that contract κ∗ does not satisfy (IRA,1) if u1 = v.

Step 6. We remove from the set D any project v for which the solution to problem (25) with

u1 = v is the no-production contract following all histories ut with ut ∈ D ∪S. For all histories

in which one of these project is available, we set the production probabilities to 0 in the optimal

contract we are constructing. Note that by the construction of problem (25), no individually

rational contract delivers a higher payoff to the principal following any such history.

Step 7. Let v1 ∈ D be the project for which the solution κ1∗ to problem (25) with u1 = v1 is

the most generous among all solutions to (25) with u1 = v′ for some v′ ∈ D. By Step 6, we can

assume that κ1∗ is such that the associated time thresholds have T v > 0 for some v ∈ D (and

correspondingly Tw <∞ for some w ∈ W).

First, we show that we cannot have v∗ � v1. In words, it must be that, conditional on

u1 = v1, the principal demands a favour with positive probability at t = 1 under κ1∗. To see

this suppose, towards a contradiction, that v∗ � v1. Fix an initial history with u1 = v1, and

define an alternative contract κ̃ such that (i) κ̃1 = 0 and κ̃t = 0 following any history ut such
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that ut′ ∈ S for any subhistory ut
′

of ut with t′ ≥ 2, and (ii) κ̃ implements κ1∗ starting from t

following all other histories. By the fact that u is a Markov process and by Step 5, we know that

ŨA,t ≥ 0 following all histories listed in point (ii). In turn, because κ̃tuA,t = 0 for all histories

listed in point (i), it follows that ŨA,t ≥ 0 for these histories. Therefore, ŨA,1 ≥ 0. Because

there exists some w ∈ S such that Tw < ∞, we have that Ũ1,P > U1∗
1,P , which contradicts the

optimality of κ1∗ in (25).

Second, we show that following any history ut with t ≥ 2, contract κ1∗ satisfies (IRA,t). To

see this, let U1∗,t
A,t be the payoff to the agent if κ1∗ was implemented starting from t, and note

that

U1∗
A,t ≥ U1∗,t

A,t

≥ 0,

where the first inequality follows by the fact that u is a Markov process and because contract

κ1∗ becomes more generous between times 1 and t, and the second inequality follows, again, by

the fact that u is a Markov process and by Step 5.

Finally, note that no individually rational contract delivers a higher payoff to the principal

than κ1∗ at any history ut with ut = v1, which follows by the construction of problem (25).

Step 8. Define the set of projects V 1 = {v1} with associated set of contracts K1 = {κ1∗}.
Now, inductively, fix a set of projects V n−1 = {v1, . . . , vn−1} and associated set of contract

Kn−1 = {κ1∗, . . . , κn−1∗}. Assume that (i) each κi∗ is individually rational following all histories,

and that (ii) no individually rational contract delivers a higher payoff to the principal than κi∗

following any history ut with ut = vi. Further assume that (iii) the time thresholds associated

to the contracts in Kn−1 are such that T u,1 ≤ T u,2 ≤ . . . ≤ T u,n−1 for all u ∈ D ∪ S. Fix any

project v′ ∈ D \ V n−1 and suppose that u1 = v′. We define the reduced problem

max
κ∈K

UP,1 subject to UA,1 ≥ 0,

UA,t ≥ 0 at each t > 1 at which ut ∈ V n−1,

κ = κi∗ at each t > 1 with ut = vi ∈ V n−1 and UA,t = 0.

(26)

This problem corresponds closely to the problem (25): the goal is to find an optimal contract

while ignoring all individual rationality constraints other than (i) the constraint at time t = 1

but also (ii) all constraints associated with the first arrival of an opportunity to demand favour

vi ∈ V n−1. In the latter case, the problem (26) prescribes that the contract κi∗ be adopted at

this history if the agent-feasibility constraint binds.
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Step 9. As in Step 2 for problem (25), we show that there exists a solution to problem (26)

with contract κ∗ of the following threshold type: for each v ∈ D \ V n−1, there exists T v ≥ 0

such that, given any history ut with (i) ut = v and (ii) UA,t′ > 0 for all 1 ≤ t′ ≤ t for which

ut′ ∈ V n−1,

κ∗t =


1 if T v ≥ t+ 1,

T v − t if t < T v < t+ 1,

0 if T v ≤ t,

and for each w ∈ S, there exists Tw ≥ 0 such that, given any history ut with (i) ut = w and

(ii) UA,t′ > 0 for all 1 ≤ t′ ≤ t for which ut′ ∈ V n−1,

κ∗t =


1 if Tw ≤ t,

t+ 1− Tw if t < Tw < t+ 1,

0 if Tw ≥ t+ 1.

In words, the thresholds above are valid until the contract transitions to κi∗ for some i =

1, . . . , n − 1. As for Step 2, the proof of this claim follows from arguments closely mirroring

those of Steps 3 and C of Proposition 1, and is omitted. Also as in Step 2, we normalise these

time thresholds so that (i) T v = 0 if and only if κ∗t = 0 for all t ≥ 1 with ut = v, and that (ii)

Tw = 0 if and only if κt = 1 for all t ≥ 1 with ut = w.

Step 10. Given simple adaptations of the arguments in Steps 3-5 for problem (25), it can be

shown that solutions to (26) for projects v ∈ D\V n−1 can be ranked according to how generous

they are to the agent. Furthermore, each of these solutions is not the no-production contract,

because each solution in Kn−1 is not the no-production contract (by Step 6).

Step 11. Let vn ∈ D \ V n−1 be the project for which the solution κn∗ to problem (26) with

u1 = vn is the most generous among all solutions to (26) with u1 = v′ for some v′ ∈ D \ V n−1

that also have T v
′
> 0. First, if no such project exists, then for all projects v ∈ D \ V n−1

and all histories ut such that ut′ /∈ V n−1 for all t′ ≤ t, we set the production probabilities to

0 in the optimal contract we are constructing. Furthermore, by construction of problem (26),

no individually rational contract delivers a higher payoff to the principal following any such

history. Second, if instead project vn is well-defined, then simple adaptations of the arguments

in Step 7 for problem (25) ensure that contract κn∗ is such that (i) it satisfies (IRA,t) following

any history ut and (ii) no individually rational contract delivers a higher payoff to the principal

than κn∗ at any history ut with ut = vn.
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Step 12. The previous step concludes the inductive construction of the optimal contract. Note

that for each contract in the collection Kn, the associated thresholds ({T v}v∈D, {Tw}w∈S) define

the collection of thresholds
(
{τ v′v}v∈D, {τ v

′w}w∈S
)
v′∈Kn from the statement of the proposition.

It only remains to be shown that these thresholds are ordered by their generosity to the agent:

suppose that v = vn and that v = vn−1, then it follows that T
u ≤ T u for all u ∈ D ∪ S. To

see this, first note that, if we let {T u,n−1}u∈D∪S be the thresholds associated to the solution

to the version of problem (26) at stage n − 1 (given sets V n−2 and Kn−2) with u1 = v, we

have that T
u ≤ T u,n−1 for all u ∈ D ∪ S. Second, our claim is established after we show that

T u,n−1 ≤ T u for all u ∈ D ∪ S. To see this, note that given u1 = v, problem (26) differs from

the version of this problem at stage n − 1 only through the additional constraint that κ = κ

following all histories with ut = v and UA,t = 0. Therefore, if we let U z,n−1
A,1 denote the agent’s

payoff in (26) at stage z = n − 1, n with u1 = v to thresholds {T u,n−1}u∈D∪S , it follows that

Un,n−1
A,1 ≥ Un−1,n−1

A,1 = 0. Given this, it must be that thresholds {T u}u∈D∪S are less generous

than thresholds {T u,n−1}u∈D∪S , that is, that T u,n−1 ≤ T u for all u ∈ D ∪ S.

Proof of Corollary 3. Suppose that the project process u is iid, fix some history ut along with

a contract κ, consider the agent’s payoff

UA,t = κtuA,t + δEtUA,t+1,

and note that EtUA,t+1 is independent of ut. It follows that the solution to problem (25) with

u1 = v is more generous to the agent than the solutions to (25) with u1 = v if and only if

|vA| > |vA|. The same property holds for solutions to problem (26), which together generate

the ranking of projects v ∈ D in terms of their generosity to the agent.
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