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Abstract

This paper presents a new method for estimating social interaction e¤ects. The
proposed approach is based on using network interaction structure induced variation
in equilibrium in�uence to construct conditionally balanced interaction structures. As
equilibrium in�uence is determined by the known interaction structure and the un-
known endogenous social interaction parameter, interaction structures are constructed
for di¤erent imputed values of the unknown parameter. Each constructed interaction
structure is conditionally balanced in the sense that when it is combined with observa-
tions on the outcome variable to construct a new variable, the constructed variable is
a valid instrumental variable for the endogenous social interaction regressor if the true
and imputed parameter values are the same. Comparison of each imputed value with
the associated instrumental variable estimate thus yields a con�dence set estimate for
the endogenous social interaction parameter as well as for other model parameters. We
provide conditions for point identi�cation and partial identi�cation.
The contrast between the proposed and existing approaches is stark. In the exist-

ing approach instruments are constructed from observations on exogenous variables,
whereas in the proposed approach instruments are constructed from observations on
the outcome variable. Both approaches have advantages, and the two approaches com-
plement one another. We demonstrate the feasibility of the proposed approach with
analyses of the determinants of subjective college completion and income expectations
among adolescents in the Add Health data and with Monte Carlo simulations of Erdös-
Rényi and small-world networks.
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1 Introduction

External e¤ects are central in economic theory and policy. External impacts can arise

through various mechanisms, including social interaction, spatial competition and direct

physical externalities, and can in�uence preferences, constraints, and expectations (Manski,

2000). Regardless of the in�uence mechanism, in many cases interaction has network struc-

ture: not all indirectly connected agents are directly connected and some connections are

more important than others. Two prominent network structures are friendship networks and

professional networks.

An important consequence of interaction through a network structure is that the strength

of equilibrium in�uence between individuals varies within each network. There are many

closely related sources for this variation. First, equilibrium in�uence between two individ-

uals depends on whether the individuals are directly or only indirectly connected. Equilib-

rium in�uence that an individual�s friends have on the individual is typically stronger than

equilibrium in�uence that an individual�s friends�friends have on the individual. Second,

equilibrium in�uence between two directly connected individuals depends on how many con-

nections the individuals have in common. Two friends who have many friends in common

typically have a stronger equilibrium in�uence on one another than two friends who do not

have friends in common. Third, equilibrium in�uence through each direct connection on an

individual depends on how many connections the individual has. Equilibrium in�uence of a

friend on an individual who has only one friend is typically stronger than equilibrium in�u-

ence of a friend on an individual who has many friends. Additional sources for variation in

equilibrium in�uence include variation in the strength of direct connections and directional

variation in connections.

In this paper we show that when social interaction has network structure, variation in

the strength of equilibrium in�uence between individuals within each network can be used

to estimate models with endogenous and exogenous social interaction e¤ects and correlated

e¤ects. Although we focus on network structures, the proposed estimation method can also

be applied when the strength of equilibrium in�uence between individuals or other entities

is governed by spatial distance. A prominent example of a spatial interaction structure is

trade networks which structure is determined by geographical distance.

We use the variation in equilibrium in�uence between individuals to construct condition-

ally balanced interaction structures, which form the basis of our proposed estimation method.

As equilibrium in�uence between individuals is determined by the known network structure

and the unknown endogenous social interaction parameter, each conditionally balanced in-
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teraction structure is constructed using the known network structure and an imputed value

of the endogenous social interaction parameter. The constructed network structure and the

observations on the endogenous variable are then combined to construct a new variable.

Each constructed network structure is conditionally balanced in the sense that if the as-

sociated imputed value and the true value of the endogenous social interaction parameter are

the same then the constructed variable is a valid instrumental variable for the endogenous

social interaction variable. Accordingly, we refer to the constructed variable as a potential

instrumental variable. The potential validity of the constructed variable as an instrumental

variable requires that each interaction structure is constructed in such a way that 1) the con-

structed variable resembles the original endogenous social interaction variable su¢ ciently�to

satisfy the instrument relevance condition�and that 2) if the imputed and true values of

the endogenous social interaction parameter are the same then the impact that the unob-

served characteristics of an individual have on the network (or within-network) �xed e¤ect

demeaned value of the constructed variable for that individual is the same as the average

impact that the unobserved characteristics of the individual have on the network (or within-

network) �xed e¤ect demeaned values the constructed variable across all individuals in the

network�to potentially satisfy the instrument exogeneity condition.

The proposed estimation strategy yields a con�dence set estimate for the endogenous so-

cial interaction parameter as well as for other model parameters. Each constructed potential

instrumental variable is used to test the null hypothesis that the associated imputed value

and the true value of the endogenous social e¤ect parameter are the same. Those feasible

values of the endogenous social interaction variable for which this null hypothesis is not

rejected form the con�dence set estimate for the endogenous social interaction parameter.

As has been argued by Mo¢ tt (2001), the four key identi�cation problems in social in-

teraction analysis are the simultaneity problem, the correlated unobservables problem, the

errors-in-variables problem, and the endogenous group/network membership problem.1 Our

proposed estimation method explicitly addresses the �rst three of these four identi�cation

problems. The simultaneity and correlated unobservables problems are addressed through

the construction of the conditionally balanced interaction structures and the associated po-

tential instrumental variables and through the inclusion of network (or within-network) �xed

1The simultaneity problem arises because outcomes of individuals whose outcomes directly in�uence the
outcome of a particular individual are also in�uenced (directly or indirectly) by the outcome of that partic-
ular individual. The correlated unobservables problem arises because unobservable variables are potentially
correlated for (directly or indirectly) connected individuals. It causes outcomes of directly connected individ-
uals to be correlated even when the endogenous social e¤ect is absent. Both problems introduce correlation
between the error term and endogenous social interaction regressor.
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e¤ects. In an extension we show that measurement error in the dependent variable and a

form of misspeci�cation error can be addressed by imposing additional conditions in the con-

struction of conditionally balanced interaction structures. To limit the scope of the analysis

we assume throughout the paper that the network structure is exogenous. While important

and relevant to most applications, systematic methods for accounting for the endogeneity of

the network structure do not yet exist (Brock et al., 2010).

The proposed estimation method contributes to the literature on the estimation and

identi�cation of di¤erent forms of external e¤ects. The closest related contributions are Bra-

moulle et al. (2009), Lin (2010), and Lee et al. (2010). These analyses are based on network

structure induced variation in friends�friends�exogenous characteristics: the instrumental

variable for the endogenous social interaction variable is constructed from observations on

an individual�s friends� friends� exogenous characteristics. In contrast, the approach pro-

posed here is based on network structure induced variation in equilibrium in�uence: the

instrumental variable for the endogenous social interaction variable is constructed from con-

structed conditionally balanced interaction structures and observations on the outcome vari-

able. Hence, the contrast between our analysis and even the closest existing contributions is

stark. While Bramoulle et al. (2009) emphasize the role of network �xed e¤ects in capturing

correlated e¤ects and in their application consider the assumption of within-network inde-

pendence of error terms reasonable, the approach developed and advanced in these related

contributions is more general than ours in that it allows also for correlated e¤ects that arise

from within-network dependence in the error terms. An advantage of the proposed approach

is that it does not rely on exclusion restrictions, which validity is di¢ cult to determine, and

which can yield too little identifying variation for the existing approach. The advantages of

each approach render them complementary rather than competing.

These closest related contributions and our contribution build on two branches of literature�

the social interaction literature and the spatial econometrics literature�which have otherwise

remained largely separate.

Analysis of identi�cation problems in social interaction settings by Manski (1993a) intro-

duced the distinctions between endogenous (social) e¤ects, contextual (social) e¤ects, and

correlated e¤ects. In this categorization endogenous e¤ects represent the in�uence of other

individuals�outcomes on each individual�s outcome. Contextual e¤ects represent the in�u-

ence of other individuals�exogenous observed characteristics on each individual�s outcome

and are interchangeably called as exogenous (social) e¤ects. Correlated e¤ects represent the

tendency of individuals to have the similar outcomes because their unobserved characteristics

are similar.
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As was observed by Manski (1993a, 2000), the central identi�cation challenge in social

interaction settings is to distinguish between when group behavior a¤ects individual behav-

ior and when group behavior merely re�ects the aggregate of individual behaviors. Manski

(1993a) named this task as the re�ection problem and emphasized that the re�ection problem

has several aspects. Distinguishing between endogenous and contextual e¤ects and distin-

guishing between endogenous and correlated e¤ects are the two central challenges. In a

complementary analysis Mo¢ tt (2001) distinguished between the four sources of endogene-

ity in identi�cation of social interaction e¤ects mentioned above and argued that the problem

of correlated unobservables, which Mo¢ tt (2001) modeled as group �xed e¤ects, is at the

core of the identi�cation problem in social interaction settings.2

The model examined in the spatial econometrics literature (see e.g. Pinkse and Slade,

2010, and Anselin, 1988) di¤ers from the model examined in the social interaction literature

in two respects. First, while the social interactions literature has generally focused on mod-

eling interaction in groups, the spatial econometrics model has spatial structure. In terms of

the connections structure, the typical spatial econometrics model is therefore more �exible

than the typical social interactions model. Second, the exogenous social e¤ect is absent from

the typical spatial econometrics model. In this sense the typical spatial econometrics model

is less �exible than the typical social interactions model.

The analyses by Bramoulle et al. (2009), Lin (2010), Lee et al. (2010) and Liu and Lee

(2009) and our analysis explicitly combine features from the social interactions and spatial

econometrics literatures and share a common motivation: in many settings network structure

o¤ers both a more realistic description of interaction and a better basis for identi�cation of

endogenous in�uence than group structure.3 For example, the academic achievement of a

student is not necessarily equally a¤ected by the performance and characteristics of all fellow

students in the relevant group (such as grade or school). Instead, fellow students who are

also the student�s friends may have more in�uence on the student than other students in the

same group. With this motivation in mind, these related analyses and our analysis adopt

the network structure assumption instead of the group structure assumption employed in

most contributions to the social interaction literature. Moreover, these related analyses and

2Manski (1993a) also stated that it is important for policy purposes to distinguish between the two types
of social e¤ects because only the endogenous social e¤ects imply the existence of a social multiplier. Identi-
�cation in social interaction models can be based on randomization (see e.g. Sacerdote, 2001), instrumental
variables (see e.g. Ionnides and Zabel, 2003), the assumed absence of one of type of social e¤ect (see e.g.
Krauth, 2006, and Trogdon et al., 2008), variations in group sizes (Graham, 2008, and Lee, 2007), and
non-linearities in discrete choice models (Brock and Durlauf, 2001 & 2007).

3The crucial role of network structure in our analysis stems from the fact that when social interaction
has group structure, the strength of equilibrium in�uence between individuals does not vary within groups.
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our analysis maintain the common assumption in the social interaction literature that both

endogenous and contextual e¤ects are present.

Bramoulle et al. (2009) formally show that network structure can facilitate identi�cation

of endogenous and contextual e¤ects. In this existing approach network structure facilitates

identi�cation of the endogenous e¤ect through variation in an individual�s friends�friends�ex-

ogenous characteristics.4 Bramoulle et al. (2009) and Lin (2010) apply the existing approach

to estimate how club participation and academic achievement, respectively, are a¤ected the

friends�outcomes and exogenous characteristics. Lee et al. (2010) extend this approach to

maximum likelihood estimation and the case in which also the error terms re�ect network

structure and show how this extension can improve estimation.5 Liu and Lee (2009) extend

the existing approach by using the number of connections of each individual to construct

additional network-speci�c instruments for the endogenous social interaction variable.6

The paper is structured as follows. The model and the proposed estimation method are

presented in Sections 2 and 3, respectively. Applications and Monte Carlo simulations are

presented in Section 4. Identi�cation is examined formally in Section 5. Extensions and

directions for future research are discussed in Section 6. The �nal section concludes.

2 The Model

We assume that there are N independent observations on networks (or on a network). For

expositional convenience we initially assume that the network structure is the same for all

N observations. This assumption is relaxed in Section 6.3. An observation on a network is

indexed by k 2 f1; 2; :::; Ng.
A network of size n is a collection of n individuals who are potentially a¤ected by the

endogenous and exogenous characteristics of other individuals in the same network. An

observation on an individual within the observation k on a network is indexed interchangeably

by ki and kj, where i; j 2 f1; 2; :::; ng :
The strength of direct in�uence between individuals in a network is determined in part

by the network structure, which is described by the interaction matrix G. Element Gij of

4Also the approaches developed in Laschever (2009) and De Georgi (2010) are based on identi�cation
of the endogenous e¤ect from peers�peers characteristics. Cohen-Cole (2006) and Cohen-Cole and Zanella
(2008) examine identi�cation in the presence of between-group contextual and endogenous e¤ects.

5Keleija and Prucha (2010) and Lin and Lee (2010), however, show that because the maximum likelihood
approach is only consistent under the assumption of homoskedasticity a Generalized Method of Moments
can be a better approach to decrease the bias and increase precision in the estimates.

6We brie�y discuss the asymptotics in Liu and Lee (2009) in Section 6.4.1 in the context of a potential
extension to the proposed method based on many weak instrumental variables approaches.
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the interaction matrix G depicts the strength of direct in�uence of individual j on individual

i relative to the direct in�uence of other individuals in the same network on individual i.

The in�uence may be directional, and thus the elements Gij and Gji may be di¤erent.7

The outcome variable is denoted by Yk. The relationship between the outcome variable

and the observed and unobserved exogenous variables is described by the regression equation

Yk = �k + �GYk + �GXk + 
Xk + "k; (1)

where the variable Xk is an observed exogenous variable, the variable �k is an unobserved

network �xed e¤ect, and the variable "k is the (unobserved) error term. The error term

"k satis�es E ["kjXk; �k] = 0; and the elements "ki of the error term "k are independently

distributed both across individuals in the same network and across networks. The uncondi-

tional variance of the element "ki of the error term "k is denoted by �2i and may di¤er across

individuals i in the same network but is constant across networks. We assume that the

observed and unobserved exogenous variables Xk and "k have �nite fourth moments. The

coe¢ cient � on the endogenous social interaction variable GYk represents the endogenous

social interaction e¤ect. The set of feasible values of the parameter � is denoted by 
 (�).8

The coe¢ cient � on the exogenous social interaction variable GXk represents the exogenous

social interaction e¤ect. The coe¢ cient 
 on the exogenous variable Xk, which is a scalar

variable for expositional convenience, represents the e¤ect of exogenous own characteristics.

To obtain an equation that describes the equilibrium in�uence of observed and unobserved

exogenous variables on the outcome variable, we �rst rearrange equation (1) to collect all

terms involving the outcome variable Yk on the left-hand side and then multiply both sides

of the resulting equation from the right by the generalized inverse (I � �G)�1 of the matrix
(I � �G) to get the equation

Yk = (I � �G)�1 �k + � (I � �G)�1GXk + 
 (I � �G)�1Xk + (I � �G)�1 "k: (2)

This equation (2) describes the equilibrium in�uence of the exogenous variables �k, Xk; and

"k on the endogenous variable Yk. This equilibrium in�uence is governed by the equilibrium

in�uence matrix E � (I � �G)�1, which is an unknown matrix as it depends not only on
7In our applications and simulations we construct G such that Gij 2 [0; 1] for all (i; j) and such that

for all i either
Pn

j=1Gij = 1 or Gij = 0 for all j. When for some i the property Gij = 0 holds for all j,
the outcome for individual i is not endogenous. To eliminate this additional source of identi�cation, in our
applications we consider also the case when

Pn
j=1Gij = 1 for all i (see footnote 13).

8The set of feasible values 
 (�) depends on the interaction structure G. The normalization
Pn

j=1Gij = 1
employed in our applications and simulations implies that the set of feasible values is 
 (�) = (�1; 1).
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the known interaction structure G but also on the unknown endogenous social interaction

parameter �. The introduced notation allows us to rewrite equation (2) as

Yk = E�k + �EGXk + 
EXk + E"k: (3)

The term E"k on the right-hand side of this equation (3) shows that the element Eij of

matrix E represents the impact of the error term "kj on the outcome variable Yki. This

implies that the element (GE)ij of matrix GE represents the impact of the error term "kj on

the element (GYk)i of the endogenous regressor GYk in the original regression equation (1).

The known matrixG and the unknown matrix E thus determine the relationship between the

endogenous regressor GYk and the error term "k. We make frequent use of this observation

below.

3 Potential Instrumental Variable Estimation Method

The proposed estimation method produces a con�dence set estimate for the endogenous

social interaction parameter � as well as for other model parameters. This con�dence set

estimate is formed of all those feasible values ~� 2 
 (�) of the parameter � for which the
null hypothesis H0: � = ~� is not rejected. In this section we �rst derive the test for each

individual null hypothesis H0: � = ~�. In the second subsection we then describe how the

results of these tests are combined to form the con�dence set estimate for the parameter

�: The test against each individual null hypothesis H0: � = ~� is based on a constructed

conditionally balanced interaction structure which construction is addressed in the third

subsection.

3.1 The Potential Instrumental Variable Test

The construction of a test for each null hypothesis H0: � = ~�; where ~� 2 
 (�), proceeds in 5
steps. Steps 1 and 2 consist of constructing a variable from the endogenous variable Yk that

is a valid instrumental variable for the endogenous regressor GYk if � = ~�. Steps 3 through

5 consist of using the constructed variable as an instrumental variable for the endogenous

regressor GYk to obtain an estimate of the parameter � and the associated test statistic for

the null hypothesis H0: � = ~�.
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3.1.1 STEP 1 of 5. Determine the In�uence of Each Element "kj of the Error
Term on Each Element Yki of the Endogenous Variable when � = ~�

In order to rely in part on the endogenous variable Yk to construct a new variable that

is a valid instrumental variable for the endogenous social interaction regressor GYk when

the null hypothesis H0: � = ~� holds, we �rst obtain a measure of the in�uence of each

element "kj of the error term "k on each element Yki of the endogenous variable Yk when

� = ~�. To accomplish this, we impute the feasible value ~� for � in the earlier de�nition

E � (I � �G)�1 of the unknown matrix E to construct the known matrix ~E � (I � ~�G)�1:
Using this de�nition of the matrix ~E, equation (3) can be rewritten as

Yk = ~E�k + � ~EGXk + 
 ~EXk + ~E"k (4)

when � = ~�. The last term ~E"k on the right-hand side of this equation (4) implies that the

element ~Eij of the matrix ~E is the impact of the error term "kj on the endogenous variable

Yki if � = ~�. Correspondingly, if a variableWYk is constructed from the endogenous variable

Yk using an arbitrary weight matrix W , then the element (W ~E)ij of the matrix W ~E is the

impact of the error term "kj on the element (WYk)i of the constructed variable WYk.

3.1.2 STEP 2 of 5. Construct the Potential Instrumental Variable

Next a matrix ~G is constructed so that the constructed variable ~GYk is a valid instrumental

variable for the endogenous regressor GYk if � = ~�. We refer to the constructed variable

as a potential instrumental variable. The instrument relevance condition requires that the

constructed variable ~GYk and the endogenous regressor GYk are correlated. For the instru-

ment exogeneity condition to hold when � = ~�, it is su¢ cient that if � = ~� then the impact

of the element "ki of the error term "k on the element ( ~GYk)i of the constructed variable
~GYk is equal to the average impact of the same element "ki of the error term "k on all the

elements ( ~GYk)1; ( ~GYk)2; :::; ( ~GYk)n of the constructed variable ~GYk. Using the de�nition of

the matrix ~E constructed in Step 1, this instrument exogeneity condition can be written

formally as �
~G ~E
�
ii
=
1

n

nX
j=1

�
~G ~E
�
ji
for all i 2 f1; :::; ng : (5)

In Step 4 we show that if the constructed matrix ~G satis�es this instrument exogeneity

condition (5) and � = ~�, then each element "ki of the error term "k has no impact on

the network �xed e¤ect demeaned value of corresponding element ( ~GYk)i of the constructed
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variable ~GYk. It is in this sense that the constructed matrix ~G is conditionally balanced and,

accordingly, we refer to the constructed matrix ~G as a conditionally balanced interaction

structure.9 Construction of the matrix ~G is addressed in Section 3.3. For now we simply

assume the matrix ~G and the associated potential instrumental variable ~GYk have been

constructed. In Step 4 we also show that when � = ~� the constructed variable ~GYk is a valid

instrumental variable for the endogenous regressor GYk.

3.1.3 STEP 3 of 5. Obtain First-Stage Estimates

Next the endogenous social interaction variable GYk, exogenous regressors GXk and Xk,

dummy variables representing network �xed e¤ects, and the constructed potential instru-

mental variable ~GYk are used to estimate the �rst-stage regression equation

GYk = �k + � ~GY
~GYk + �GXGXk + �XXk + vk; (6)

where �k denote network �xed e¤ects, vk is the error term, and � ~GY ; �GX ; and �X are

coe¢ cients on the observed explanatory variables. We denote the Least Squares estimates

of parameters �k; � ~GY ; �GX ; and �X by �̂k; �̂ ~GY ; �̂GX ; and �̂X , respectively:

Parameter estimates and the associated predicted values of the dependent variable GYk
from the �rst-stage regression (6) depend on the constructed matrix ~G. Consequently, we de-

note predicted values from the �rst-stage regression equation (6) bydGY ~G

k and the associated

residuals GYk �dGY ~G

k by v̂
~G
k . The predicted values are calculated as

dGY ~G

k = �̂k + �̂ ~GY
~GYk + �̂GXGXk + �̂XXk: (7)

3.1.4 STEP 4 of 5. Obtain Second-Stage Estimates

Next a second-stage regression equation is estimated to obtain the potential instrumental

variable estimate of the parameter �: Using the de�nition v̂ ~Gk � GYk�dGY ~G

k , we can substitute

GYk =dGY ~G

k + v̂
~G
k for GYk in the original regression equation (1) to obtain the second-stage

regression equation

Yk = �k + �dGY ~G

k + �GXk + 
Xk + �v̂k + "k: (8)

9In contrast, the original interaction structure G is (almost always) unbalanced in this sense and thus the
endogenous social interaction regressor GYk is (almost always) correlated with the error term "k.
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In this second-stage regression equation (8) the regressors are dGY ~G

k , GXk, Xk; and the

dummy variables representing the network �xed e¤ects �k: The error term is now �v̂k + "k:

The Least Squares estimator of the coe¢ cient � from the second-stage regression equation

(8) is the potential instrumental variable estimator of the endogenous social interaction

parameter �. This estimate of the parameter � depends in part on the imputed value ~� used

in constructing the conditionally balanced interaction structure ~G. Accordingly, we denote

the potential instrumental variable estimator by �̂IV (~�).

Before proceeding to Step 5, in which a test statistic for the null hypothesis � = ~�

is constructed from the potential instrumental variable estimate �̂IV (~�), we examine the

properties of the estimator �̂IV (~�). Speci�cally, we now show that if � =
~� then the estimator

�̂IV (~�) is a consistent estimator of the parameter �. It is of course important to also examine

behavior of the estimator �̂IV (~�) when � 6= ~�. This other side of identi�cation is addressed
computationally and analytically in Sections 4.2 and 5, respectively.

We �rst establish the following result.

Lemma 1. The potential instrumental variable estimator �̂IV (~�) satis�es

plimN �̂IV (~�) = � +

P
i

��
~GE
�
ii
� 1

n

P
j

�
~GE
�
ji

�
�2i

R
� plimN �̂ ~GY ; (9)

where R is a strictly positive constant.

Proof. See Appendix 1.

We assume that the easily testable instrument relevance condition plimN �̂ ~GY 6= 0 holds
for the constructed potential instrumental variable ~GYk. Substituting the known matrix
~E = (I� ~�G)�1 for the unknown matrix E in the above expression (9) yields the probability
limit for the estimator �̂IV (~�) when � = ~�. The result shows that if � = ~� then the

asymptotic bias plimN(�̂IV (~�) � �) of the estimator �̂IV (~�) is zero if and only if

nX
i=1

" �
~G ~E
�
ii
� 1

n

nX
j=1

�
~G ~E
�
ji

!
� �2i

#
= 0: (10)

A su¢ cient condition for this condition (10) to hold regardless of how the unknown variances
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�2i of the error terms "ki are distributed across individuals i 2 f1; :::; ng is that�
~G ~E
�
ii
� 1

n

nX
j=1

�
~G ~E
�
ji
= 0 for all i 2 f1; :::; ng : (11)

This condition (11) holds by construction as is the same condition as condition (5) that was

used in the construction of the matrix ~G in Step 2. Consequently, if � = ~� the potential

instrumental variable estimator �̂IV (~�) is a consistent estimator of the parameter �:

3.1.5 STEP 5 of 5. Calculate the Test Statistic

In the �nal step the test statistic
�̂IV (�̂)�~�rdvar��̂IV (�̂)� ; where dvar(�̂IV (�̂)) is an estimate of the

variance of the potential instrumental variable estimator �̂IV (�̂), is calculated and compared

with the associated critical value to determine whether the null hypothesis H0: � = ~� is

rejected. As the estimator �̂IV (�̂) is an asymptotically unbiased estimator of the parameter �

when � = ~� (see Step 4), the relevant critical values are obtained from the standard normal

distribution provided that the constructed variable ~GYk is relevant enough to serve as an

instrumental variable i.e. has a su¢ ciently high �rst-stage F -statistic.

3.2 Construction of the Con�dence Set Estimate for �

The (1� p)% con�dence set estimate for the parameter � is constructed as the union of

all those feasible values ~� 2 
 (�) of the parameter � for which the null hypothesis H0:
� = ~� is not rejected at the p% level in Step 5. We denote the resulting (1� p)% con�dence
set estimate for the parameter � by 	(1�p) (�) : By construction the test against each the

null hypothesis H0: � = ~� in Step 5 has the nominal size p. Consequently, the probability

that the true value of the endogenous social interaction parameter � is in the constructed

con�dence set estimate 	(1�p) (�) is arbitrarily close to 1�p when the number of observations
N on networks is large enough. We now state this result as a formal proposition.

Proposition 1. When a potential instrumental variable can be constructed for all fea-

sible values of the endogenous social interaction parameter �; the con�dence set estimate

	(1�p) (�) obtained using the potential instrumental variable estimation method satis�es the

property

lim
N!1

P
�
� 2 	(1�p) (�)

�
= 1� p: (12)
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The other side of identi�cation�what is the behavior of the estimator �̂IV (~�) when
~� 6= �

and which feasible values will not lie in the constructed con�dence set 	(1�p) (�)�is addressed

computationally and formally in Sections 4.2 and 5, respectively. A direct implication of

Proposition 1 is that the potential instrumental variable estimation method yields a test

for any null hypothesis H0: � = �0 with an asymptotically correct size: the result �0 =2
	(1�p) (�) indicates that the null hypothesis H0: � = �0 should be rejected. The quali�er

in the beginning of Proposition 1 relates to the fact that for some network structures G a

conditionally balanced interaction structure cannot be constructed for all feasible values of

the parameter �. As this does not occur in our applications, discussion of the construction

of the con�dence set estimate in this case is postponed until Section 6.4.2.

3.3 Construction of Conditionally Balanced Interaction Structures

A constructed conditionally balanced interaction structure ~G associated with feasible value
~� must be such that the constructed variable ~GYk is correlated with the endogenous social

interaction regressor GYk and that the constructed variable ~GYk is conditionally balanced in

the sense that when � = ~� the constructed variable also satis�es the instrument exogeneity

condition (5). Typically there are multiple such matrices ~G.10

To �nd an interaction structure ~G that resembles the original network structure su¢ -

ciently, we construct an objective function which is increasing in the value of those elements
~Gij for which the corresponding element Gij of the original interaction structure G is positive

and decreasing in the value of those elements ~Gij for which the corresponding element Gij
of the original network structure G is zero. Formally, we �nd each conditionally balanced

interaction structure ~G as a solution to the constrained optimization problem

~G � argmax
~G

X
i

X
j

n
~GijGij � ~Gij�[Gij=0]c

o
(13)

10Optimal ~G would maximize correlation between network �xed e¤ect demeaned values of the variables
GYk and ~GYk subject to the instrument exogeneity condition (5). However, analytical tractability of such an
optimization problem is questionable because the objective function would be nonlinear in the n2 unknown
parameters of matrix ~G and involve taking the expectation of a nonlinear function of the error terms "k
which have unknown distributions. Moreover, the objective function would contain an imputed equilibrium
interaction matrix ~E, which would imply that when the null hypothesis � = ~� does not hold the constructed
potential instrumental variable ~GYk might have a weak relationship with the instrumented variable GYk.
This would lead to weak power against alternative hypotheses and, consequently, the constructed con�dence
set estimates would be wide. For these reasons we favor the ad hoc approach in the text.
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s.t.
�
~G ~E
�
ii
� 1

n

nX
j=1

�
~G ~E
�
ji
= 0 for all i 2 f1; :::; ng (14a)

~Gij 2 [lb; ub] for all i 2 f1; :::; ng and for all j 2 f1; :::; ng (14b)X
i

X
j

~Gij = 1; (14c)

where

�[Gij=0] =

(
1 if Gij = 0

0 otherwise
(15)

is an indicator function that indicates whether Gij is zero, and where lb; ub and c are parame-

ters set by the researcher. The term ~GijGij (the term ~Gij�[Gij=0]c) in the objective function

(13) implies that the value of the objective function is increasing (decreasing, provided that

c > 0) in the value of those elements ~Gij for which the corresponding element Gij in the

original network structure G is positive (zero). The �rst constraint (14a) is the instrument

exogeneity condition (5). The second constraint (14b) reduces computational complexity

and prevents potential solutions for which the values of a small number of elements in ~G are

either very high or very low.11 The third constraint (14c) is a normalization.12 In our appli-

cations and simulations we set lb = �1; ub = 1 and c = 0:01: To limit the scope of this paper,
analyses of how the choice of parameters lb; ub and c and the choice of the objective function

in�uence the properties of the proposed estimation method are left for future research.

4 Applications and Monte Carlo Simulations

In this section we �rst apply the proposed estimation method to the study of subjective in-

come and college expectations. We then demonstrate the identi�cation power of the proposed

method with Monte Carlo simulations of Erdös-Rényi and small-world networks.

4.1 Applications with Add Health Data

We employ the National Longitudinal Study of Adolescent Health (Add Health) data and

the proposed estimation method to estimate the impacts of variables such as gender, race,

11When the values of a small number of elements in ~G are either very high or very low the value of
the constructed variable ~GYk is mostly determined by the value of the outcome variable Yk for a relatively
small number of individuals in each network and, consequently, the constructed variable ~GYk is only a weak
instrument for the endogenous regressor GYk.
12The normalization implies that even when c = 0 there is a cost to increasing the value of any element
~Gij for which the corresponding element Gij of the original network structure G is zero.
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grade point average, and parents�education and occupational status on subjective income

and college completion expectations among adolescents. To focus the main text on the

methodology, we relegate to the Background Appendix a review of the literature on subjec-

tive expectations and discussion of the substantive motivation for analyses of income and

college expectations. The Implementation Appendix in turn contains the details on the im-

plementation of the proposed method; these details include the employed grid of feasible

values for the parameter �, calculation of con�dence set estimates for other model parame-

ters, and how the analysis accounts for the fact that network structure is di¤erent across

observations.

The main purpose of the applications is to demonstrate the feasibility of the proposed

method. In this regard the results show that 1) conditionally balanced network interaction

matrices can be constructed for interaction structures that occur in the real world (i.e. in

the Add Health survey), 2) that in these real world applications the constructed potential

instrumental variables are strong enough to satisfy the instrument relevance condition, and

3) that in these real world applications the proposed method has identi�cation power in

the sense that the obtained con�dence set estimates are proper subsets of the set of feasible

values. A secondary aim of the applications is the comparison of the obtained con�dence set

estimates with the con�dence intervals obtained using the existing estimation method. In this

regard the results demonstrate an advantage of the proposed method: it allows researchers

to remain relatively agnostic about what exogenous e¤ects should be included in the model

as the results do not hinge on exclusion restrictions on variables constructed from observed

exogenous variables.

4.1.1 Data

We employ the Add Health data because these data include friendship denomination data

for most of the subjects in the study, which along with information on the grade and school

of each respondent facilitates the construction of grade-school level network interaction ma-

trices G. For this same reason the Add Health data were also employed in the three closest

related studies by Bramoulle et al. (2009) Lin (2010) and Lee et al. (2010), which ex-

amined the determinants of club participation, grade point average, and hours spent on

homework/watching tv, respectively. In part due to the ubiquity of applications that have

utilized the Add Health data, we relegate to the Data Appendix the description of these

data as well as the discussion of sample construction and associated descriptive statistics.

14



4.1.2 Caveats to Causal Interpretation

An important caveat to a causal interpretation of the estimates arises from the voluntary

nature of friendship networks in the Add Health data. Among the many analyses of peer

e¤ects that have relied on Add Health data only a handful of papers, such as Calvo-Armengol

et al. (2009) and Fletcher and Ross (2009), have incorporated analyses of the network

formation problem and, as Brock et al. (2010) mention, systematic methods for the analysis

of endogenous network formation do not yet exist. Another important caveat to a causal

interpretation of the estimates arises from simultaneous determination of variables such as

GPA, college expectations, and income expectations.

Both types of caveats apply also to the applications presented in each of the three closest

related methodological contributions by Bramoulle et al. (2009), Lin (2010) and Lee et

al. (2010). Moreover, these caveats do not interfere with the methodological objectives

mentioned in the second paragraph of Section 4.1. Even if the estimates do not re�ect causal

e¤ects the applications demonstrate that for network structures and variables observed in

the real world the proposed method is feasible and the estimates obtained using the existing

and proposed methods have certain relative properties.

4.1.3 Results for the Proposed Method

Results of applications of the proposed method to analyses of the determinants of subjec-

tive college completion and income expectations are shown in Tables 1 and 2, respectively.

Con�dence set estimates that do not include the value zero are indicated in bold. Columns

1-3 in each table show results for the fully networked sample in which every individual both

nominated a friend and is nominated as a friend. Column 4 in each table shows results for

the is/has friend sample in which every individual either nominated a friend or was nom-

inated as a friend.13 Before discussing these results, we discuss Figure 1 which illustrates

how the con�dence set estimate for the endogenous social interaction parameter � is derived.

The sub-�gures on the left and on the right in Figure 1 correspond to the speci�cations and

results in Column 3 of the Table 1 and in Column 3 of Table 2, respectively.

The top sub-�gures in Figure 1 depict the �rst-stage F -statistic as a function of the

imputed value ~�: The �rst-stage F -statistic is high even when the imputed value ~� is the

13See the Data Appendix for the construction of the two samples. In the fully networked sample the
network-�xed e¤ect demeaned value of the endogenous social interaction regressor GYk is endogenous for
every individual in every network. In contrast, in the is/has friend sample the endogenous social interaction
regressor GYk is exogenous for individuals who are not nominated as friend by any individual and for
individuals who do not report any friends in the sample. The use of the fully networked sample demonstrates
that the proposed estimation method can work even when these additional sources of identi�cation are absent.
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Table 1. 95% Con�dence Set Estimates for College Expectations.

Dependent Variable: y_College_Expectations
Estimation Method: Proposed (Potential Instrumental Variable).

(1) (2) (3) (4)
Endogenous E¤ect
Gy_College_Expectations [0:62;0:68] [0:37;0:46] [0:38;0:49] [0:59;0:73]

Network Fixed E¤ect yes yes yes yes

Own Characteristics
x_GPA [0:48;0:58] [0:51;0:58] [0:50;0:58]
x_Age [�0:19;�0:10] [�0:19;�0:10] [�0:20;�0:12]
x_Female [0:20;0:27] [0:24;0:33] [0:29;0:38]
x_Asian [�0:00; 0:14] [�0:03; 0:15] [0:04;0:19]
x_Black [0:19;0:31] [0:07;0:28] [0:23;0:39]
x_Hispanic [�0:07; 0:10] [�0:08; 0:10] [�0:09; 0:08]

x_Mom_College [0:16;0:25] [0:17;0:25] [0:22;0:30]
x_Dad_College [0:17;0:27] [0:18;0:27] [0:21;0:29]
x_Mom_Professional [0:01;0:09] [0:01;0:10] [0:21;0:29]
x_Dad_Professional [�0:05; 0:06] [�0:05; 0:06] [�0:05; 0:06]
x_Mom_White_Collar [0:09;0:20] [0:09;0:20] [0:09;0:19]
x_Dad_White_Collar [0:04;0:16] [0:04;0:16] [0:06;0:17]
x_Parent_Homemaker [�0:05; 0:07] [�0:05; 0:07] [�0:04; 0:07]
x_Parent_Military [0:03;0:20] [0:02;0:20] [�0:01; 0:17]

Exogenous/Contextual E¤ects
Gx_GPA [�0:24; 0:02] [�0:53;�0:06]
Gx_Age [�0:08; 0:07] [�0:24;�0:10]
Gx_Female [�0:26;�0:08] [�0:43;�0:14]
Gx_Asian [�0:09; 0:18] [�0:25; 0:04]
Gx_Black [�0:05; 0:23] [�0:38; 0:01]
Gx_Hispanic [�0:11; 0:14] [�0:15; 0:07]

Gx_Mom_College [�0:17; 0:03] [�0:24; 0:02]
Gx_Dad_College [�0:22;�0:00] [�0:34;�0:04]
Gx_Mom_Professional [�0:13; 0:03] [�0:12; 0:04]
Gx_Dad_Professional [�0:08; 0:12] [�0:09; 0:13]
Gx_Mom_White_Collar [�0:04; 0:17] [�0:18; 0:11]
Gx_Dad_White_Collar [�0:03; 0:18] [�0:11; 0:16]
Gx_Parent_Homemaker [�0:06; 0:13] [�0:15; 0:07]
Gx_Parent_Military [�0:28; 0:04] [�0:23; 0:10]

Sample Fully Networked Fully Networked Fully Networked Has/Is Friend
Number of Networks (N) 486 486 486 489

Observations (
PN

k=1 nk) 42; 827 42; 827 42; 827 60; 495

Network Parameters (
PN

k=1 n
2
k) 6; 287; 061 6; 287; 061 6; 287; 061 12; 298; 399
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Table 2. 95% Con�dence Set Estimates for Income Expectations.

Dependent Variable: y_Income_Expectations
Estimation Method: Proposed (Potential Instrumental Variable).

(1) (2) (3) (4)
Endogenous E¤ect
Gy_Income_Expectations [0:29;0:40] [0:04;0:15] [0:03;0:16] [0:07;0:22]

Network Fixed E¤ect yes yes yes yes

Own Characteristics
x_College_Expectations [0:26;0:29] [0:26;0:29] [0:26;0:29]
x_GPA [0:15;0:23] [0:16;0:22] [0:14;0:19]
x_Age [�0:09;�0:00] [�0:08;�0:00] [�0:09;�0:02]
x_Female [�0:22;�0:12] [�0:21;�0:10] [�0:20;�0:11]
x_Asian [�0:32;�0:10] [�0:26;�0:02] [�0:29;�0:09]
x_Black [�0:18; 0:01] [�0:23; 0:02] [�0:14; 0:04]
x_Hispanic [�0:26;�0:07] [�0:23;�0:06] [�0:23;�0:09]

x_Mom_College [0:02;0:14] [0:03;0:14] [0:00;0:10]
x_Dad_College [�0:05; 0:08] [�0:04; 0:08] [�0:01; 0:09]
x_Mom_Professional [�0:00; 0:11] [�0:00; 0:11] [0:01;0:10]
x_Dad_Professional [0:04;0:19] [0:04;0:19] [0:07;0:20]
x_Mom_White_Collar [0:03;0:15] [0:03;0:14] [0:04;0:14]
x_Dad_White_Collar [0:01;0:15] [0:01;0:15] [0:02;0:14]
x_Parent_Homemaker [0:08;0:20] [0:08;0:20] [0:07;0:17]
x_Parent_Military [�0:10; 0:09] [�0:10; 0:09] [�0:04; 0:13]

Exogenous/Contextual E¤ects
Gx_College_Expectations [�0:08; 0:05] [0:07;0:17]
Gx_GPA [�0:06; 0:08] [�0:08; 0:08]
Gx_Age [�0:06; 0:06] [�0:07; 0:02]
Gx_Female [�0:13; 0:04] [�0:10; 0:05]
Gx_Asian [�0:35;�0:06] [�0:30; 0:04]
Gx_Black [�0:12; 0:16] [�0:16; 0:06]
Gx_Hispanic [�0:22; 0:07] [�0:23; 0:02]

Gx_Mom_College [�0:03; 0:16] [�0:11; 0:07]
Gx_Dad_College [�0:18; 0:01] [�0:07; 0:09]
Gx_Mom_Professional [�0:10; 0:08] [�0:13; 0:06]
Gx_Dad_Professional [�0:15; 0:11] [�0:09; 0:16]
Gx_Mom_White_Collar [�0:04; 0:15] [0:01;0:20]
Gx_Dad_White_Collar [�0:09; 0:16] [�0:15; 0:09]
Gx_Parent_Homemaker [�0:12; 0:09] [�0:07; 0:13]
Gx_Parent_Military [�0:06; 0:27] [�0:10; 0:18]

Sample Fully Networked Fully Networked Fully Networked Has/Is Friend
Number of Networks (N) 486 486 486 489

Observations (
PN

k=1 nk) 42; 827 42; 827 42; 827 60; 495

Network Parameters (
PN

k=1 n
2
k) 6; 287; 061 6; 287; 061 6; 287; 061 12; 298; 399
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Figure 1: Two illustrations of the derivation of the con�dence set estimate.

highest value (0:99) in the selected grid of feasible values for the parameter �. Moreover, the

�rst-stage F -statistic decreases as ~� increases. This feature is as expected in the Add Health

application. The underlying reason, as we discuss next, is that there is considerable variation

in the number of friends across individuals within networks in the Add Health data.

The in�uence that the outcome of friends have on an individual is proportional to �,

whereas the in�uence that the outcome of individuals who are k connections removed from

an individual have on the individual is proportional to �k. When � is small, the relative

magnitudes of � and �k are very di¤erent and, consequently, variation in equilibrium in�u-

ence within a given network is relatively high. In contrast, when � is close to 1 the relative

magnitudes of � and �k are very similar. Consequently, when � is very close to 1 the equilib-

rium in�uence of an individual on other individuals in the network is almost the same across
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the network. Therefore, for any imputed value ~� close to 1; an associated conditionally

balanced interaction structure ~Gk must have approximately as many connections for every

individual for the constructed interaction structure be conditionally balanced.14 However,

as there is within network variation in the number of friends in the Add Health data, for

any imputed value ~� close to 1 constructed conditionally balanced interaction structures ~Gk
will then be quite di¤erent from original interaction structures Gk, which in turn implies

that the relationship between the endogenous regressor GkYk and the constructed variable
~GkYk is weaker when the imputed value ~� is closer to 1: In contrast, when each individual

has the same number of friends, conditionally balanced interaction structures ~Gk associated

with imputed value ~� close to 1 will be very similar to the corresponding original interaction

structures Gk.

The middle sub-�gures in Figure 1 depict the 95% con�dence interval indicated by each

potential instrumental variable estimate �̂IV (~�) and the associated standard error as a func-

tion of the associated imputed value ~�. The width of the con�dence interval for each im-

puted value ~� re�ects the associated value of the �rst-stage F -statistic. The upper and lower

bounds of the con�dence interval are both roughly linear functions of ~� (except near extreme

feasible values of parameter �), which justi�es the use of linear interpolation to determine

the con�dence interval for feasible values of parameter � that are not in the selected grid of

feasible values. Moreover, the upper and lower bounds of the con�dence interval decrease as

a function of the imputed value ~�. This is a desirable feature from the perspective of identi-

�cation as it implies a �xed point property that yields point identi�cation of the parameter

� (see Section 5).

The bottom sub-�gures in Figure 1 depict the con�dence intervals against the 45-degree

line � = ~�. The 95% con�dence set estimate 	0:95 (�) of parameter � is constructed as the

union of all those feasible values � for which the 95% con�dence interval contains the feasible

value � = ~�, where ~� is the imputed value used in the construction of the 95% con�dence

interval: Accordingly, in each bottom sub-�gure in Figure 1, the 95% con�dence set estimate

is constructed as the union of all those feasible values � for which the 45-degree line � = ~� is

between the con�dence interval mapping. The shaded vertical bar in each bottom sub-�gure

in Figure 1 indicates this 95% con�dence set estimate.

From a methodological perspective the results in Tables 1 and 2 demonstrate that the pro-

posed estimation method works. The constructed conditionally balanced interaction struc-

14If for an imputed value ~� close to 1 the constructed interaction structure ~Gk for network k had more
connections for individual i in the network than others, the in�uence of the error term "ki on the element
( ~GkYk)i of the constructed variable would be higher than the average in�uence of the "ki is on the constructed
variable ~GkYk. This would violate the condition that any constructed ~Gk must be conditionally balanced.
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tures ~Gk are similar enough with the original network structures Gk that the associated

constructed potential instrumental variables ~GkYk are similar enough with the endogenous

social interaction variable GkYk to satisfy the instrument relevance condition. Moreover,

while we have postponed formal analysis of the the other side of identi�cation�behavior of

the potential instrumental variable estimator �̂IV (~�) when
~� 6= ��until Section 5, the results

here indicate that the proposed method has identi�cation power. For both outcome variables

the obtained 95% con�dence set estimate of the endogenous social interaction parameter �

is quite narrow across the di¤erent speci�cations: The di¤erent speci�cations illustrate that

the proposed method can be applied in the absence of any explanatory variables (Column 1),

in the presence of only endogenous social interaction e¤ects (Column 2), and in the presence

of both exogenous and endogenous social interaction e¤ects (Columns 3 and 4).

Substantively the results in Tables 1 and 2 suggest that the endogenous social interaction

e¤ect is positive and quite large for subjective college expectations and smaller but still

positive for subjective income expectations. With respect to own characteristics, the results

are as expected.15 With respect to exogenous social interaction e¤ects, the results show

a negative association between an individual�s friends�parents�college education and the

individual�s college expectations. One potential causal explanation is that the in�uence that

friends�college expectations have on an individual�s college expectations is heterogenous in

the individual�s friends�parents�education: a decision to go to college by a friend whose

parents are not college educated might be more informative for an individual about the

importance of college than the same decision by a friend whose parents are college educated.

Similar reasoning can be applied to support a causal interpretation of the result that when

college expectations is the outcome variable the coe¢ cient on friend being female is negative.

4.1.4 Comparison with Results for the Existing Estimation Method

Results obtained using the estimation method proposed by Bramoulle et al. (2009) and Lin

(2010) are shown in Table 3. In Panel A friends�friends�characteristics (GkGkx_�) are used

as instruments for the endogenous social interaction variable GkYk: In Panel B the exogenous

e¤ects (Gkx_) are not included in the model and thus also friends�characteristics (Gkx_�)

15GPA is positively associated with both college and income expectations, and college expectations are
positively associated with income expectations. Being female is positively associated with college expecta-
tions but negatively associated with income expectations. Age is negatively associated with both college
and income expectations, re�ecting the fact that the oldest individuals in each grade are those that have
repeated a grade. Consistent with the results in Jacob and Wilder (2010), college expectations are positively
associated with being black. In contrast, but still as expected, being in any racial minority is negatively
associated with income expectations. Also as expected is the �nding that many of the variables measuring
parents�educational and occupational status are positively associated with college and income expectations.
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Table 3. 95% Con�dence Intervals for College and Income Expectations.

Estimation Method: Existing (Instruments in Panel A: GGx_� [Panel B: Gx_� and GGx_�] of included _x�).

(1) (2) (3) (4)
Dependent Variable y_College_Exp: y_College_Exp: y_Income_Exp: y_Income_Exp:
Sample Fully Networked Is/Has Friend Fully Networked Is/Has Friend
Network Fixed E¤ect yes yes yes yes
PANEL A
Endogenous E¤ect [0:59;1:00] [0:34;0:56] [�0:15; 0:74] [0:03;0:61]

Own Characteristics
x_College_Expectations [0:26;0:29] [0:26;0:29]
x_GPA [0:49;0:56] [0:52;0:58] [0:16;0:22] [0:13;0:19]
x_Age [�0:17;�0:09] [�0:20;�0:14] [�0:08;�0:00] [�0:08;�0:02]
x_Female [0:24;0:33] [0:29;0:36] [�0:20;�0:10] [�0:19;�0:11]
x_Asian [�0:04; 0:16] [0:05;0:18] [�0:24; 0:00] [�0:27;�0:08]
x_Black [0:05;0:28] [0:23;0:37] [�0:22;�0:05] [�0:14; 0:04]
x_Hispanic [�0:08; 0:11] [�0:09; 0:06] [�0:22;�0:05] [�0:22;�0:08]

x_Mom_College [0:16;0:24] [0:23;0:30] [0:03;0:13] [0:00;0:10]
x_Dad_College [0:18;0:27] [0:22;0:30] [�0:04; 0:08] [�0:01; 0:09]
x_Mom_Professional [0:02;0:10] [0:01;0:09] [�0:00; 0:11] [0:01;0:10]
x_Dad_Professional [�0:06; 0:06] [�0:04; 0:06] [0:04;0:18] [0:07;0:19]
x_Mom_White_Collar [0:07;0:17] [0:11;0:19] [0:03;0:14] [0:04;0:13]
x_Dad_White_Collar [0:02;0:14] [0:07;0:17] [0:02;0:15] [0:02;0:14]
x_Parent_Homemaker [�0:06; 0:07] [�0:04; 0:07] [0:08;0:20] [0:07;0:17]
x_Parent_Military [0:01;0:19] [0:00;0:17] [�0:10; 0:09] [�0:04; 0:13]

Exogenous/Contextual E¤ects
Gx_College_Expectations [�0:20; 0:06] [�0:18; 0:01]
Gx_GPA [�0:49;�0:18] [�0:27;�0:07] [�0:13; 0:07] [�0:12; 0:04]
Gx_Age [�0:02; 0:14] [�0:16;�0:10] [�0:05; 0:07] [�0:11;�0:01]
Gx_Female [�0:34;�0:16] [�0:30;�0:14] [�0:12; 0:11] [�0:09; 0:06]
Gx_Asian [�0:15; 0:13] [�0:17; 0:04] [�0:32; 0:01] [�0:23; 0:08]
Gx_Black [�0:16; 0:13] [�0:21; 0:00] [�0:09; 0:19] [�0:14; 0:07]
Gx_Hispanic [�0:09; 0:17] [�0:13; 0:06] [�0:20; 0:14] [�0:18; 0:06]

Gx_Mom_College [�0:25;�0:06] [�0:13; 0:02] [�0:05; 0:14] [�0:12; 0:05]
Gx_Dad_College [�0:32;�0:12] [�0:21;�0:05] [�0:11; 0:07] [�0:08; 0:09]
Gx_Mom_Professional [�0:16; 0:02] [�0:11; 0:03] [�0:11; 0:07] [�0:14; 0:04]
Gx_Dad_Professional [�0:10; 0:12] [�0:09; 0:10] [�0:18; 0:09] [�0:10; 0:13]
Gx_Mom_White_Collar [�0:12; 0:11] [�0:06; 0:12] [�0:06; 0:14] [�0:00; 0:17]
Gx_Dad_White_Collar [�0:08; 0:15] [�0:03; 0:17] [�0:11; 0:14] [�0:16; 0:06]
Gx_Parent_Homemaker [�0:08; 0:14] [�0:10; 0:08] [�0:14; 0:08] [�0:08; 0:11]
Gx_Parent_Military [�0:31; 0:06] [�0:17; 0:10] [�0:06; 0:27] [�0:11; 0:16]

First-Stage F -statistic 10:18 21:49 1:80 3:40

PANEL B (w/out Exog. E¤ects)
Endogenous E¤ect [0:30;0:37] [0:05;0:06] [0:04;0:13] [0:01;0:03]
First-Stage F -statistic 69:55 4119:68 60:56 4343:63
Overidenti�cation test, p-value 0:000 0:000 0:001 0:018

21



are employed as instruments for the endogenous social interaction variable GkYk.

Results in Table 3 are qualitatively similar to the corresponding results in Tables 1

and 2. From a substantive perspective such robustness of results to the choice of the es-

timation approach is naturally a desired feature in any application. The results in Panel

A of Table 3 come with the caveat that for these analyses the �rst-stage F -statistic is

low. This aspect of the analysis highlights the main disadvantage of the existing estima-

tion method. When the included exogenous e¤ects are weak, the existing estimation ap-

proach does not have good identi�cation power because a low value of the coe¢ cient on

the variable Gkx_some_variablek implies that the variables GkGkx_some_variablek and

GkGkGkx_some_variablek are weak instruments. The existing approach is similarly disad-

vantaged when exogenous e¤ects are not included in the model but own characteristics have

only a weak impact on the outcome variable. While variables Gkx_� can then be used as

an instruments for the endogenous social interaction variable, provided of course that the

exclusion restrictions are correct, a low value of the coe¢ cient on x_some_variablek implies

that the variable Gkx_some_variablek is a weak instrument. A related problem with using

GkGkx_some_variablek and GkGkGkx_some_variablek as instruments is that variation in

such variables is often limited for reasons discussed at the end of the Data Appendix.

As expected, the value of the �rst-stage F -statistic is higher when exogenous e¤ects are

excluded (see Panel B of Table 3). However, a standard overidenti�cation test (Hansen�s

J-statistic) indicates that not all of the exclusion restrictions are valid. While in each case

there may exist a speci�cation in which the exclusion restrictions are valid and instruments

are relevant enough, such a speci�cation search comes with the cost of additional potential

complications arising from issues such as nested hypothesis testing and power of overiden-

ti�cation tests. In comparison, when the proposed approach is applied the researcher can

remain relatively agnostic about which exogenous e¤ects should be included in the speci�-

cation as identi�cation in the proposed approach is not based on instruments constructed

from the observed exogenous variables and the associated exclusion restrictions.

4.2 Monte Carlo Simulations

We now present results from Monte Carlo simulations of Erdös-Rényi and small-world net-

works. In an Erdös-Rényi network links are i.i.d. and any two nodes in the network are

connected with probability p (Erdös and Rényi, 1959). A small-world network of size N

is generated by starting from N
k
disjoint sub-groups of size k. Initially all pairs of nodes

within each sub-groups are connected, while no pairs of nodes in di¤erent sub-networks are
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connected. Then, with probability p each link in the initial network structure is recon�gured

at random (Watts and Strogatz, 1998). Previously, Bramoulle et al. (2009) have employed

these network structures to examine the performance of the existing estimator. We employ

these network structures to demonstrate that the proposed estimation method has identi�-

cation power and to demonstrate that an important determinant of the relative properties

of the two estimation methods is the strength of the exogenous e¤ect.

We set the network size at n = 100 and the number of observations on the network

at N = 50. For small-world networks we set the sub-group size at k = 10: Observations

are generated using model (1) with one exogenous variable Xk. We set Xki � N (0; 2),

"ki � N (0; 1) and �k � N (0; 1), where both Xki and "ki are independently distributed

both within and across networks. We set coe¢ cients on variables Xk and GXk at 
 = 1

and � = 0:5; respectively. We show four graphs that depict coverage probabilities for � =

�0:5; � = 0 and � = 0:5; and the power function against the null hypothesis H0: � = 0.

The coverage probabilities and power functions are calculated using the 95% con�dence set

estimate for the proposed method and the 95% con�dence interval for the existing method.16

In the existing method the variables GGXk and GGGXk are used as instruments for the

endogenous regressor GYk.17

Figures 2 and 3 depict results for undirected Erdös-Rényi and small-world networks,

respectively, as a function of the network structure parameter p. Coverage probabilities for

the proposed method (solid line) indicate that the width of the associated con�dence set

estimates is generally increasing in the parameter p. A similar pattern holds for the existing

method (dashed line), except in the case � = �0:5: When � = �0:5, the chosen parameters
satisfy �
 + � = 0 and, as was shown by Bramoulle et al. (2009), the existing method

then has no identi�cation power. For an Erdös-Rényi network with p = 0:9 the number of

connections in the network is very high and there is very little variation in the regressors GYk
and GXk because the set of friends is then almost the same for individuals in the network

and because the variables GYk and GXk are then constructed as averages of so many random

variables that variation in them is small. Consequently, for an Erdös-Rényi network with

p = 0:9 neither method has much (if any) identi�cation power. The proposed method has

identi�cation power in all other cases. And more speci�cally, the results suggest that in most

16We only show results for undirected networks; results for directed versions of these networks are similar.
We set the grid of feasible values of the parameter � as [�0:99;�0:9;�0:8;�0:7; :::; 0:9; 0:99]: Each estimate
is based on 400 replications. The network structure G is the same across the replications. This limits
computational demands and yields estimates for a given network instead of the average estimate across
networks generated with the same parameters. Bramoulle et al. (2009) apply the same approach.
17Network �xed e¤ects are of course included in both estimation approaches. E¢ ciency of both approaches

can be improved by using the estimators developed in Keleijan and Prucha (2010) and Lin and Lee (2010).
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Figure 2: Proposed (solid line) and existing (dashed line) methods in Erdös-Rényi networks.
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Figure 3: Proposed (solid line) and existing (dashed line) methods in small-world networks.
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of these cases the proposed method yields point identi�cation, although results for small-

world networks with p � 0:1 and � = :5 demonstrate that the con�dence set estimate is not
always continuous. The results also show that the power of the proposed method can be poor

against the null hypothesis H0: � = 0 when the true parameter value is � = 0:99: This is

because � = 0:99 implies that there is very little variation in the endogenous regressor GYk:

Comparison of the results for the proposed and existing methods show that the proposed

estimation method can yield much more precise estimates than the existing method.

Figure 4 depicts results for Erdös-Rényi networks with p = 0:05 as a function of the

exogenous e¤ect �: Results for the case � = 0 demonstrate the general feature that the lower

is the absolute value of the exogenous e¤ect � the better is the performance of the proposed

method relative to the existing method as a low absolute value of the coe¢ cient � on the

variable GXk implies that the variables GGXk and GGGXk are only weak instruments.

Results for the cases � = �0:5 and � = 0:5 are driven by the fact that, as discussed above,
the existing method has little identi�cation power when �
 + � � 0
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Figure 4: Proposed (solid line) and existing (dashed line) methods in Erdös-Rényi networks
as a function of the exogenous e¤ect �:
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5 Identi�cation

Proposition 1 shows that the con�dence set estimate 	1�p (�) contains the true value of

the endogenous social interaction parameter � at the chosen probability 1 � p: We now
consider the other side of identi�cation formally: we examine behavior of the con�dence set

estimate 	1�p (�) in relation to feasible values ~� 6= � when the number of observations N
on the network increases without limit. It is of course desirable that the probability that

the con�dence set estimate 	1�p (�) contains any such feasible value ~� 6= � is as small as

possible.

We provide su¢ cient conditions for point identi�cation and for two types of partial identi-

�cation. Of course, either point or partial identi�cation may occur even when these su¢ cient

conditions do not hold. The conditions for partial identi�cation imply that the parameter �

is point identi�ed for a connected subset of the set of feasible values 
 (�) and possibly only

set identi�ed for each of the one or two remaining connected subsets of the set of feasible

values 
 (�). Accordingly, we refer to the conditions for partial identi�cation as conditions

for �partial point identi�cation�. These conditions are most useful when the feasible value

� = 0 lies in the point identi�ed subset as the data then provide at least qualitative infor-

mation on the presence and direction of the endogenous e¤ect � (i.e. whether � < 0, � = 0

or � > 0). Throughout the analysis we assume that the estimator �̂IV (~�) can be constructed

for each feasible value of the endogenous social interaction parameter �. This condition is

easily veri�able and holds in our Add Health applications. For expositional convenience, we

assume that the set of feasible of values for parameter � is 
 (�) = (�1; 1).
For point identi�cation we provide su¢ cient conditions under which in the limit the

probability that the constructed con�dence set estimate 	1�p (�) contains any feasible value
~� 6= � is zero. Formally, we provide su¢ cient conditions under which the property

lim
N!1

P
�
~� 2 	1�p (�) j ~� 6= �

�
= 0 for all � 2 
 (�) and for all ~� 2 
 (�) (16)

holds. Together with Proposition 1 this condition (16) implies that in the limit the proba-

bility that a feasible value ~� 2 
 (�) is contained in the con�dence set estimate 	1�p (�) is
non-zero if and only if the feasible value ~� is the true value �.

Under the �rst set of conditions for partial identi�cation point identi�cation occurs for all

feasible values � 2 
1 (�), where 
1 (�) = (�1; ��]; and set identi�cation occurs for all feasible
values � 2 
2 (�), where 
2 (�) = (��; 1). The sets 
1 (�) and 
2 (�) are thus mutually

disjoint connected subsets of the set 
 (�) and satisfy the property 
1 (�) [ 
2 (�) = 
 (�).
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Formally, we provide su¢ cient conditions under which the properties

lim
N!1

P
�
~� 2 	1�p (�) j ~� 6= �

�
= 0 for all � 2 
 (�) and for all ~� 2 
1 (�) (17)

and

lim
N!1

P
�
~� 2 	1�p (�) j ~� 6= �

�
= 0 for all � =2 
2 (�) and for all ~� 2 
2 (�) (18)

hold. Together with Proposition 1 these conditions (17) and (18) imply that in the limit

the probability that a feasible value ~� 2 
1 (�) is contained in the con�dence set estimate
	1�p (�) is non-zero if and only if the feasible value ~� is the true value �, and that in the limit

the probability that a feasible value ~� 2 
2 (�) is contained in the con�dence set estimate
	1�p (�) is positive only if the true value � is in the same subset of feasible values 
2 (�) :

Under the second set of conditions for partial identi�cation point identi�cation occurs

for all feasible values � 2 
1 (�), where 
1 (�) = [��; ��]; and set identi�cation occurs for all
� 2 
0 (�), where 
0 (�) = (�1; �); and also for all � 2 
2 (�), where 
2 (�) = (��; 1). The
sets 
0 (�), 
1 (�) and 
2 (�) are thus mutually disjoint connected subsets of the set 
 (�)

and satisfy the property 
0 (�) [ 
1 (�) [ 
2 (�) = 
 (�). Formally, we provide su¢ cient

conditions under which properties (17), (18) and

lim
N!1

P
�
~� 2 	1�p (�) j ~� 6= �

�
= 0 for all � =2 
0 (�) and for all ~� 2 
0 (�) (19)

hold. Together with Proposition 1 these conditions (17), (18) and (19) imply that in the limit

the probability that a feasible value ~� 2 
1 (�) is contained in the con�dence set estimate
	1�p (�) is positive if and only if the feasible value ~� is the same as the true value �, and

that in the limit the probability that a feasible value ~� 2 
0 (�) (feasible value ~� 2 
2 (�))
is contained in the con�dence set estimate 	1�p (�) is positive only if the true value � is in

the same subset of feasible values 
0 (�) (subset of feasible values 
2 (�)).

Given that the estimator �̂IV (~�) determines whether feasible value
~� is included in the

con�dence set estimate 	1�p (�), a necessary and su¢ cient condition for the condition (16)

for point identi�cation to hold is

plimN �̂IV (~�) 6= � for all � 6= ~� and for all ~� 2 
 (�) . (20)
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A set of su¢ cient conditions for this condition (20) to hold are

plimN �̂IV (~�) � � for all � < ~� and for all ~� 2 
 (�) (21)

and

plimN �̂IV (~�) � � for all � > ~� and for all ~� 2 
 (�) : (22)

Condition (22) implies that for all imputed values ~� lower than the true value �, in the limit

the estimate will be above the true value. Condition (21) in turn implies that for all imputed

values ~� higher than the true value �, in the limit the estimate will be below the true value.

Together the conditions (21) and (22) thus imply a �xed point property that yields point

identi�cation.

Similarly, necessary and su¢ cient conditions for the conditions (17) and (18) for the �rst

type of partial point identi�cation to hold are

plimN �̂IV (~�) 6= � for all � 6= ~� and for all ~� 2 
1 (�) (23)

and

plimN �̂IV (~�) 6= � for all � =2 
2 (�) and for all ~� 2 
2 (�) ; (24)

respectively. A set of su¢ cient conditions for these conditions (23) and (24) to hold are

plimN �̂IV (~�) � � for all � < ~� and for all ~� 2 
1 (�) (25)

plimN �̂IV (~�) � � for all � > ~� and for all ~� 2 
1 (�) ; (26)

and

plimN �̂IV (~�) � � for all � =2 
2 (�) and for all ~� 2 
2 (�) : (27)

For all � 2 
1 (�) these conditions (25), (26) and (27) imply a �xed point property�similar
to the �xed point property implied by the conditions (21) and (22) for point identi�cation�

which implies point identi�cation for all � 2 
1 (�) : For all � 2 
2 (�) the condition (26)
implies that for imputed values ~� 2 
1 (�) ; which are lower than any true value � 2 
2 (�) ;
in the limit the estimate is higher than the true value, and thus in the limit the con�dence

set estimate does not include any imputed value ~� 2 
1 (�) implying a form of partial

identi�cation for all � 2 
2 (�).
Similarly, necessary and su¢ cient conditions for the conditions (17), (18) and (19) for
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the second type of partial point identi�cation to hold are conditions (23), (24) and

plimN �̂IV (~�) 6= � for all � =2 
0 (�) and for all ~� 2 
0 (�) ; (28)

respectively. A set of su¢ cient conditions for these conditions (23), (24) and (28) to hold

are conditions (25), (26), (27) and

plimN �̂IV (~�) � � for all � =2 
0 (�) and for all ~� 2 
0 (�) : (29)

Given the expression (74) for the probability limit of the estimator �̂IV (~�), a su¢ cient

condition for the �rst condition (21) for point identi�cation to hold is

�
~GE
�
ii
� 1

n

nX
j=1

�
~GE
�
ji
� 0 for all i 2 f1; :::; ng and for all � < ~� and for all ~� 2 
 (�) ;

(30)

and a su¢ cient condition for the second condition (22) for point identi�cation to hold is

�
~GE
�
ii
� 1

n

nX
j=1

�
~GE
�
ji
� 0 for all i 2 f1; :::; ng and for all � > ~� and for all ~� 2 
 (�) :

(31)

Whether conditions (30) and (31) hold in a given application depends on the constructed

conditionally balanced interaction structures ~G and on the equilibrium interaction matrix E;

which in turn depends on the known interaction structure G and the unknown parameter �.

While the parameter � is unknown, it is straightforward to verify whether conditions (30)

and (31) hold for all feasible values in the selected grid of feasible values of the parameter �.

In our experience the su¢ cient conditions (30) and (31) rarely hold, which is why we

place more emphasis on slightly more stringent conditions for point identi�cation and the

corresponding conditions for partial point identi�cation. More speci�cally, we establish con-

ditions for point and partial identi�cation when the variances �2i of the error terms "ki within

each network satisfy the property

�2MAX � c� �2MIN ; (32)

where �2MAX and �2MIN , respectively, are the highest and lowest variances among the un-

conditional error term variances �i for the observations i 2 f1; 2; :::; ng within a network
and c � 1 is a constant. While the variance ratio restriction parameter c is unknown, its

interpretation is straightforward.
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When the variance ratio assumption (32) holds, the expression (74) for the probability

limit of the estimator �̂IV (~�) implies that su¢ cient conditions for the conditions (21) and

(22) for point identi�cation to hold are

X
i

(
(I�i<0 + c� I�i>0)

"�
~GE
�
ii
� 1

n

nX
j=1

�
~GE
�
ji

#)
� 0 for all � < ~� and for all ~� 2 
 (�)

(33)

and

X
i

(
(c� I�i<0 + I�i>0)

"�
~GE
�
ii
� 1

n

nX
j=1

�
~GE
�
ji

#)
� 0 for all � > ~� and for all ~� 2 
 (�) ;

(34)

where indicator functions I�i<0 and I�i>0 are de�ned as I�i<0 = 1 if ( ~GE)ii� 1
n

Pn
j=1(

~GE)ji <

0 and I�i<0 = 0 otherwise, and I�i>0 = 1 if ( ~GE)ii � 1
n

Pn
j=1(

~GE)ji > 0 and I�i>0 = 0

otherwise. Condition (33) implies that even if �2i = �2MIN for all i for which ( ~GE)ii �
1
n

Pn
j=1(

~GE)ji < 0 and �2i = �
2
MAX for all i for which ( ~GE)ii � 1

n

Pn
j=1(

~GE)ji > 0, the sumP
i((
~GE)ii� 1

n

P
j(
~GE)ji)�

2
i , which determines the sign of the bias for the estimator �̂IV (~�);

is still negative. Interpretation of condition (34) is analogous and omitted.

Corresponding conditions for partial identi�cation are derived similarly. When the vari-

ance ratio assumption (32) holds, the expression (74) for the probability limit of the estimator

�̂IV (~�) implies that su¢ cient conditions for the conditions (25), (26) and (27) for the �rst

type of partial point identi�cation to hold are

X
i

(
(I�i<0 + c� I�i>0)

"�
~GE
�
ii
� 1

n

nX
j=1

�
~GE
�
ji

#)
� 0 for all � < ~� and for all ~� 2 
1 (�) ;

(35)X
i

(
(c� I�i<0 + I�i>0)

"�
~GE
�
ii
� 1

n

nX
j=1

�
~GE
�
ji

#)
� 0 for all � > ~� and for all ~� 2 
1 (�)

(36)

and

X
i

(
(I�i<0 + c� I�i>0)

"�
~GE
�
ii
� 1

n

nX
j=1

�
~GE
�
ji

#)
� 0 for all � =2 
2 (�) and for all ~� 2 
2 (�) ;

(37)

and that su¢ cient conditions for the conditions (25), (26), (27) and (29) for the second type
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of partial point identi�cation are conditions (35), (36), (37) and

X
i

(
(I�i<0 + c� I�i>0)

"�
~GE
�
ii
� 1

n

nX
j=1

�
~GE
�
ji

#)
� 0 for all � =2 
0 (�) and for all ~� 2 
0 (�) :

(38)

We now summarize the above results in a formal proposition.

Proposition 2. When a potential instrumental variable can be constructed for all feasible
values of the endogenous social interaction parameter � and the variance ratio assumption

(32) holds, the con�dence set estimate 	1�p (�) obtained using the potential instrumental

variable estimation method yields point identi�cation under conditions (33) and (34), the

�rst type of partial point identi�cation under conditions (35), (36) and (37), and the second

type of partial point identi�cation under conditions (35), (36), (37) and (38).

Table 4 shows to what extent the three sets of identi�cation conditions in Proposition 2

hold in the Add Health data as a function of the parameter c in the variance ratio condition

(32). When the variances of error terms within a given network are the same (unrestricted)

c = 1 (c = 1). In calculating these frequencies we only consider those cases of partial
identi�cation for which point identi�cation occurs at � = 0 i.e. we require that � < 0

(� < 0 and �� > 0) for type 1 (type 2) partial identi�cation to occur. The results show

that while the conditions for point identi�cation rarely hold regardless of the variance ratio

parameter c, the conditions for the second type of partial identi�cation hold for 73% of the

489 networks even when the variance ratio parameter c is as high as 10. Moreover, this

percentage increases from 73% to 94% when the 200 smallest networks are excluded from

the analysis. The su¢ cient conditions for identi�cation established in Proposition 2 are

thus relevant for network structures observed in the real world. We reiterate that because

the conditions established in Proposition 2 are only su¢ cient conditions, point or partial

identi�cation may occur even when these conditions do not hold.

Point Partial, Type 1 Partial, Type 2

c = 1 18% 71% [median ��: 0:9] 94% [median �; �� : �1; 0:8]
c = 5 4% 19% [median ��: 0:8] 81% [median �; �� : �0:8; 0:6]
c = 10 2% 6% [median ��: 0:8] 73% [median �; �� : �0:6; 0:5]
c = 100 0 % 0% [median ��: 0:8] 8% [median �; �� : �0:2; 0:3]
c =1 0 % 0% [median ��: -] 0% [median �; �� : -]

Table 4. Percentage of networks in the is/has friend sample of Add Health data for which
identi�cation conditions in Proposition 2 hold.
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6 Extensions and Directions for Future Research

6.1 Within-Network Fixed E¤ects

Within-network �xed e¤ects capture unobserved shocks that are common to individuals in

each mutually exclusive subset of individuals in a given network and which may be corre-

lated with observed exogenous variables. For example, when network structure represents

friendships between students in the same school, grade-speci�c within-network �xed e¤ects

can capture the in�uence of unobserved shocks that are common to all students within each

grade in a given school.18

Extending the proposed estimation method to allow for within-network �xed e¤ects is

straightforward, with within-network �xed e¤ects formally de�ned as variables that are con-

stant across all observations in each mutually exclusive subset of observations in each net-

work. Let Si index the within-network subset of observation i in a network: De�ne nSi as the

number of observations in the within-network subset Si. De�ne the characteristic variable

�[Sj=Si] =

(
1 if Sj = Si
0 otherwise

(39)

to capture whether observation j in the network belongs in the same within-network subset

as observation i: A conditionally balanced network structure ~G associated with the feasible

value ~� is now constructed in such a way that if ~� = � then the in�uence of error term "ki

on the constructed variable ( ~GYk)i is the same as the average in�uence of the error term "ki

is for all observations in the within-network subset in which observation i belongs. Formally,

conditionally balanced interaction structures ~G are constructed using condition

�
~G ~E
�
ii
=

1

nSi

nX
j=1

��
~G ~E
�
ji
� �[Sj=Si]

�
for all i 2 f1; :::; ng : (40)

instead of condition (5). Using condition (40) the comparison group for each observation

is all observations in the same within-network subset in the same network. Within-network

�xed e¤ects can thus vary across networks.

18Another example is the case when socioeconomic status is captured by a categorical variable (e.g. �nei-
ther parent is white collar; one parent is white-collar; two parents are white-collar�) and the associated
within-network �xed e¤ects are employed to capture the possibility that the impact socioeconomic status on
the outcome variable may vary across networks. An additional bene�t of employing a within-network �xed
e¤ects approach is that interacting the endogenous social interaction regressor with dummy variables that
represent the characteristic captured with within-network �xed e¤ects (e.g. grade or sosioeconomic status)
facilitates inspection of whether the endogenous e¤ect is heterogenous in this characteristic.
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6.2 Measurement and Misspeci�cation Error

As was mentioned in the introduction, Mo¢ tt (2001) lists measurement error as one of four

key problems in the identi�cation of social interaction e¤ects. To our knowledge neither the

existing nor the proposed approach is robust to the type of measurement error in explanatory

variables modeled by Mo¢ tt (2001). The proposed estimator can be modi�ed to become

robust to classical measurement error in the dependent variable. Suppose that the true

model is still (1) but observations are on the variable Y MM
k , which is de�ned as

Y MM
k = Yk + ek; (41)

where ek represents i.i.d. measurement error or i.i.d. misspeci�cation error due to, for

example, optimization errors by individuals. Combining model (1) and expression (41) yields

Y MM
k � ek = �k + �G

�
Y MM
k � ek

�
+ �Gxk + 
xk + "k; (42)

which can be rearranged as

Y MM
k = (I � �G)�1 �k + � (I � �G)�1Gxk + 
 (I � �G)�1 xk + ek + (I � �G)�1 "k: (43)

Expression (43) shows that constructed interaction structures ~G must now be such that if
~� = � then also in�uence of the element eki of the measurement/misspeci�cation error term

ek on the element ( ~GYk)i of the constructed variable ~GYk is the same as the average in�uence

of the same error term eki is on all observations of the constructed variable ~GYk in the same

network. Formally, each constructed interaction structure ~G must satisfy also condition

~Gii �
1

n

nX
j=1

~Gji = 0 for all i 2 f1; :::; ng : (44)

Figure 5 depicts such measurement/misspeci�cation error robust con�dence set estimates

for the proposed method in directed (solid line) and undirected (dashed line) Erdös-Rényi

networks with p = 0:05 as a function of the variance �2 of error terms "ki: Other parameters

are set as in Section 4.2. The results show that the proposed method continues to have

identi�cation power. Especially power against the null hypothesis H0: � = 0 continues to

be high. This occurs because for imputed value ~� = 0 the additional condition (44) and the

original condition (5) are the same (for ~� = 0 the associated matrix ~E in condition (5) is an

identity matrix). Imposing the additional condition (44) in the construction of conditionally
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Figure 5: Measurement/misspeci�cation error robust proposed method in directed (solid
line) and undirected (dashed line) Erdös-Rényi networks as a function of error term variance.

balanced interaction structures ~G therefore does not impact power of the proposed method

against the null hypothesis H0: � = 0:

In contrast, for feasible values ~� for which ~� 6= 0 and ~� 6= � imposing the additional

condition (44) can markedly increase the probability that the feasible value ~� is included in

the con�dence set estimate. Coverage probabilities shown in Figure 5 indicate that con�-

dence set estimates are quite narrow for directed Erdös-Rényi networks but much wider for

undirected Erdös-Rényi networks. Moreover, coverage probabilities for the proposed method

in an undirected Erdös-Rényi network in row 3 of Figure 5 are much higher than coverage

probabilities for the proposed method in row 2 of Figure 2 (calculated for the same para-

meterization but without condition (44)). Results in Figure 5 also demonstrate the general

feature of the proposed method that coverage probabilities are not necessarily monotonic

in variance of the error terms. This occurs because an increase in variance of the error

terms also increases in variation in the endogenous regressor GYk and in variation in the

constructed instrument ~GYk which form the basis for identi�cation in the proposed method.
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6.3 Observations on Networks with Di¤erent Network Structures

We now show that the analysis extends to the case when the k observations on networks

do not necessarily have the same network structure. For this purpose, denote the network

structure for observation k by Gk, the constructed network structure for observation k asso-

ciated with the imputed feasible value ~� by ~Gk, and the equilibrium in�uence matrices for

observation k associated with the true and imputed parameter values � and ~� by Ek and
~Ek, respectively. For observation k, the condition (5) for a constructed network structure to

be conditionally balanced is now written as�
~Gk ~Ek

�
ii
=
1

n

X
j

�
~Gk ~Ek

�
ji
for all i 2 f1; :::; ng ; (45)

which must hold for all observations k. Substituting ~Gk for ~G and Ek for E in expression

(71) for the probability limit of the estimator �̂IV (~�) yields

plimN �̂IV (~�) = � +

plimN
1
N

P
k

P
i

��
~GkEk

�
ii
� 1

n

P
j

�
~GkEk

�
ji

�
"2ki

R
� plimN �̂ ~GY : (46)

Consider �rst the case ~� = �. Substituting ~Ek for Ek in the above expression (46) and

then employing condition (45) yields

plimN �̂IV (~�) = � +

"
plimN

1
N

P
k

P
i (0) ("ki)

2 + 0

R

#
� plimN �̂ ~GY : (47)

Hence, provided that the constructed interaction structures ~Gk resemble the original inter-

action structures Gk su¢ ciently to satisfy the easily testable instrument relevance condition

plimN �̂ ~GY 6= 0, the property plimN �̂IV (~�) = � again holds if
~� = �. Thus, the con�dence

set estimate 	1�p (�) will again include the true value � at the chosen probability 1� p.
Consider now the case ~� 6= �. The terms in the numerator of the expression (46) for the

probability limit of the estimator �̂IV (~�) each have expectation �
~GkEk

�
ii
� 1

n

X
j

�
~GkEk

�
ji

!
�2k;i; (48)

where �2k;i denotes the variance of the error term "ki in network k. When the variance ratio

assumption (32) and conditions (33) and (34) for point identi�cation hold for every network
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k 2 f1; :::; Ng the expectation of every term in the numerator in expression (46) is non-

positive for all � < ~� and non-negative for all � > ~�: A version of the law of large numbers

due to Chebyshev (1867), which allows expectations and variances to vary across the terms

in the sum as long as they are both bounded, then implies that the probability limit of the

sum in expression (46) has the same sign as the expectations of the individual terms in the

sum.19 This result in turn implies that plimN �̂IV (~�) � � for all � < ~� and plimN �̂IV (~�) � �
for all � > ~�. Hence, when the variance ratio assumption (32) and conditions (33) and (34)

hold for all observed networks, point identi�cation occurs even when the network structure

is di¤erent across observations.

The same line of argument shows that if the variance ratio assumption (32) and either

the set of conditions (35), (36) and (37) or the set of conditions (35), (36), (37) and (38)

for partial identi�cation hold for every network then the type of partial identi�cation occurs

even when network structure is di¤erent across observations.

6.4 Directions for Future Research

6.4.1 Many Instruments

When network structure is di¤erent across observations constructed conditionally balanced

structures ~Gk will resemble original interaction structures Gk more for some observations

than others. Accordingly, correlation between those parts of ~GkYk and GkYk that are not ex-

plained by �xed e¤ects or observed exogenous variables will be stronger for some observations

than others. Interacting the variable ~GkYk with N network dummy variables, and using the

resulting N variables as potential instrumental variables, may then yield a better basis for

estimation than using the variable ~GkYk as the lone instrumental variable. Implementation

of this approach in applications presented here is hampered by computational limitations.

The relevant estimators, for which Chao et al. (2010) provide the asymptotic analysis, are

jackknife instrumental variables estimators.20 As a result, even when the recursive residual

based approach in Chao et al. (2010) is employed, computation of the estimates and the

19The same theorem implies that even when network structure is di¤erent across observations a probability
limit exists for the parameter �̂ ~GY in the �rst-stage regression as well as for expression (65) for R in the
derivation of Lemma 1.
20Network-speci�c instrumental variables constructed from centrality measures are key to the estimation

approach developed in Liu and Lee (2010). The asymptotics in Liu and Lee (2010) invoke the assumption
that also the size n of networks increases without limit. When this assumption is employed, also the
estimators examined in Hausman et al. (2009), which unlike Liu and Lee (2010) allow (do not allow) for
heteroskedasticity (within-network correlation), can be employed in the present context in an analysis with
network-speci�c potential instrumental variables.
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associated variance covariance matrix is computationally very demanding. The computation

involves a triple summation over the sample space, which is large in the Add Health data as

is the variable space when network-speci�c potential instrumental variables are present.

6.4.2 Using Sign of Bias in Constructing Con�dence Set Estimates

Let �̂LS denote the Least Squares estimator of the parameter � in the original regression

equation (1). The estimator �̂LS is biased for almost all � 2 
 (�). However, as we discuss
here brie�y, network structure can enable researchers sign the bias of the estimator �̂LS when

� = �� for a given feasible value �� 2 
 (�) and thereby use the estimator �̂LS to determine
whether the feasible value �� belongs in the con�dence set estimate 	1�p (�). This approach is

potentially bene�cial when the original interaction structure G is such that for some feasible

values ~� an associated conditionally balanced interaction structure ~G cannot be constructed

and when a constructed potential instrumental variable ~GYk can be constructed but is too

weak to satisfy the instrument relevance condition. Similarly, also the ability to determine

the sign of the bias of a potential instrumental variable estimator �̂IV (~�) when � =
��, where

�� 6= ~�, can be used to determine whether the feasible value �� belongs in the con�dence set
estimate 	1�p (�).

Following the steps in the derivation of the probability limit for the potential instrumental

variable estimator �̂IV (~�) in Appendix 1, it is straightforward to show that the probability

limit of the Least Squares estimator �̂LS is

plimN �̂LS = � +

P
i

�
(GE)ii � 1

n

P
j (GE)ji

�
�2i

R
; (49)

where R again denotes a strictly positive constant, and �2i is the variance of the error term

"ki. In expression (49) the equilibrium in�uence matrix E = (I � �G)�1 is unknown but for
� = �� can be expressed as �E = (I � ��G)�1. Therefore, if � = �� the sign of the bias of the

estimator �̂LS is the same as the sign of the expression

nX
i=1

" �
G �E
�
ii
� 1

n

nX
j=1

�
G �E
�
ji

!
� �2i

#
: (50)

Hence, the sign of the bias of the estimator �̂LS is positive (negative) when � = �� if condition

�
G �E
�
ii
� 1

n

nX
j=1

�
G �E
�
ji
> 0 for all i 2 f1; :::; ng ( < 0 for all i 2 f1; :::; ng ) (51)
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holds. Suppose that for some feasible value �� condition (51) holds with the positive inequality

and that the feasible value �� is above the con�dence interval computed using the Least

Squares estimate �̂LS. Expression (50) for the sign of the bias and the con�dence interval

then enable researchers to reject the null hypothesis H0: � = �� and exclude the feasible

value �� from the con�dence set estimate 	1�p (�) for parameter �. The case when condition

(51) holds with the negative inequality is treated analogously.

Such a sign of bias based approach can only yield partial identi�cation. Moreover, in many

cases condition (51) holds with neither positive nor negative inequality. However, it can still

be possible to determine the sign of the bias provided that one is willing to make additional

assumptions about how the variances �2i of the error terms "ki vary across individuals in a

network, analogously to the variance ratio restriction (32) employed in Section 5.

6.4.3 Combining Existing and Proposed Approaches

The distinct advantages of the proposed and existing approaches render the approaches com-

plementary. A parallel application of the two approaches provides researchers an opportunity

to examine the robustness of results to the choice of estimation method and the associated

assumptions. A sequential application of the two approaches may in turn be employed to

improve the precision of the estimates. Estimates from the existing approach can be used to

�rst perform a (Cochrane-Orcutt) transformation to account for (spatial) correlation among

unobservables not captured by network or within network �xed e¤ects. The proposed ap-

proach, which as our Monte Carlo simulations have shown can have much better �nite-sample

performance than the existing method, can then be applied to the transformed variables.

7 Conclusion

The method proposed in this paper allows researchers to take advantage of interaction struc-

ture induced variation in equilibrium in�uence to estimate endogenous and exogenous social

interaction e¤ects. Variation in equilibrium in�uence is present in network structure based

models of social interaction and in spatial interaction models.

In implementing the proposed method, conditionally balanced interaction structures are

�rst constructed using the original interaction structure and an imputed value of the endoge-

nous social interaction parameter. Each constructed interaction structure is then combined

with observations on the outcome variable to construct a potential instrumental variable

for the endogenous social interaction variable. Comparison of each potential instrumental

variable estimate with the associated imputed value of the endogenous social interaction
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parameter yields a con�dence set estimate for the endogenous social interaction parameter

as well as for other parameters in the model.

Implementation of the proposed method is straightforward. And while the method is

computationally relatively demanding, recent advances in computation render the method

feasible. We have demonstrated this with analyses of the determinants of subjective income

and college completion expectations among adolescents. Implementation of these applica-

tions (using the is/has friend Add Health sample) involved solving for each considered feasible

value of the endogenous social interaction parameter 489 constrained optimization problems

with over 12 million unknown interaction structure parameters.

Comparison of the proposed approach with the existing network structure based esti-

mation approach is sharp. In the proposed approach instruments are constructed from the

outcome variable whereas in the existing approach excluded exogenous variables are used as

instruments. The disadvantage of the proposed method is that while it allows for correlated

e¤ects that can be represented by network �xed e¤ects or within-network �xed e¤ects, the

existing method allows an unrestricted within-network correlation structure for unobserved

variables. The advantage of the proposed method is that it does not rely on excluded ex-

ogenous variables for identi�cation. An important step in implementing the existing method

is the determination of whether the relevant exclusion restrictions are valid, which is com-

plicated by issues related to nested hypothesis testing and power of overidenti�cation tests.

Moreover, when exclusion restrictions concern peers�peers�characteristics and peers�peers�

peers�characteristics, as has been the case in the applications o¤ered in the literature, iden-

tifying variation is limited as we have argued in this paper. The proposed approach, in

contrast, does not rely on such variation and associated exclusion restrictions for identi�-

cation. Accordingly, the proposed approach allows researchers to remain relatively agnostic

about which exogenous variables can be excluded from the model.

The advantages of each approach make the approaches complementary rather than com-

peting. Application of the approaches in parallel allows researchers to examine the robustness

of results to the choice of estimation method and the associated assumptions. In addition,

researchers may bene�t from a sequential application of the two approaches. Analyses of

this and other potential extensions discussed in Section 6.4 are left for future research.
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Appendix 1: Proof of Lemma 1 (Probability Limit of
the Potential Instrumental Variable Estimator)

The estimator �̂IV (~�) can be expressed as

�̂IV (~�) =

P
k

P
i r̂i1 (Yk)iP

k

P
i r̂
2
i1

; (52)

where r̂i1 are the residuals

r̂i1 �
 dGYk �X

k

f̂DkDk � f̂GXGXk � f̂XXk

!
i

(53)

from the regression of the variable dGYk on the variables Dk; GXk, and Xk. This auxiliary

regression equation is formally written as

dGYk =X
k

fDkDk + fGXGXk + fXXk + rk: (54)

Substituting the second-stage regression equation (8) for Yk in expression (52) yields

�̂IV (~�) =

P
k

P
i r̂i1

�
�dGYk +Pk �DkDk + �GXk + 
Xk + �v̂k + "k

�
iP

k

P
i r̂
2
i1

: (55)

Variables Dk; GXk and �Xk are among the regressors in the regression equation (54) that

yields the residuals r̂i1 and are thus orthogonal to the residuals r̂i1. Using this observation

expression (55) for �̂IV (~�) can be rewritten as

�̂IV (~�) =

P
k

P
i r̂i1

�
�dGYk + �v̂k + "k�

iP
k

P
i r̂
2
i1

; (56)

which can be reorganized as

�̂IV (~�) = �

P
k

P
i r̂i1

�dGYk�
iP
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P
i r̂
2
i1
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k

P
i r̂i1 (�v̂k + "k)iP
k
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i r̂
2
i1

: (57)
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Using again the observation that the variables Dk; GXk and �Xk are orthogonal to the

residuals r̂i1, the above expression can be rewritten as

�̂IV (~�) = �

P
k

P
i r̂i1

�dGYk �Pk f̂DkDk � f̂GXGXk � f̂XXk

�
iP
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P
i r̂
2
i1

+

P
k

P
i r̂i1 (�v̂k + "k)iP
k

P
i r̂
2
i1

:

(58)

Using de�nition (53) of r̂i1 we can substitute r̂i1 for
�dGYk �Pk f̂DkDk � f̂GXGXk � f̂XXk

�
i

in the numerator of the �rst term to get

�̂IV (~�) = � +

P
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P
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P
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2
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: (59)

Using de�nition (53) of r̂i1 we now substitute
�dGYk �Pk f̂DkDki � f̂GXGXk � f̂XXk

�
i
for

r̂i1 in the numerator of the second term to get

�̂IV (~�) = � +
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Reorganizing the terms in the numerator yields

�̂IV (~�) = �+
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Regressors Dk; GXk and �Xk in the �rst-stage regression (6) and predicted values
�dGYk�

i
from the �rst-stage regression are orthogonal to the residuals (v̂k)i from the same regression.

Using this observation yields
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Using de�nition (7) of the �rst-stage predicted values dGYk allows us to rewrite this as
�̂IV (~�) = � +
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Substituting the network �xed-e¤ect demeaned versions of the variables ~GYk, GXk, and Xk

for the variables ~GYk, GXk, and Xk yields
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Using de�nition
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and the assumption E ["kjXk; �k] = 0 we have
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Using expression (3) for the relationship between the outcome variable Yk and the observed

and unobserved exogenous variables allows us to rewrite this as
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Using the assumption E ["kjXk; �k] = 0 again allows us to rewrite this as
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Reorganizing yields
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Using independence of the unobserved error terms "k within and across networks yields
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Using the result
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Data Appendix

The National Longitudinal Study of Adolescent Health (Add Health) is a nationally represen-

tative school-based study of adolescents. In wave I of this study an in-school questionnaire of

this study was administered in 132 schools to all students on grades 7-12 in September 1994 -

April 1995. More detailed in-home interviews were conducted in four waves to a much smaller

sample. We employ only data from the wave I in-school questionnaire. The in-school data

contain information on respondents�demographics, family characteristics, academic perfor-

mance, expectations, club participation and psychological as well as physical well-being. As

was mentioned in the main text, the Add Health data also contain information on which

other students in the same school each respondent nominates as their friend.

In constructing the sample we initially follow Lin (2010) to facilitate ease of replication

across related studies. Networks are constructed at the school-grade level. Each grade in

each school thus forms its own network. Lin (2010) provides a detailed documentation of

how elimination of observations with missing or invalid information on respondent ID, age,

grade, gender, race, number of years in school, family structure and academic performance

a¤ects the sample size and descriptive statistics variable by variable. The cumulative impact

of these eliminations is that sample size is reduced from 90; 118 to 70; 639: As is noted in

Lin (2010), only 60; 495 students in this sample of 70; 639 students either nominate as their

friend another student in the sample or are nominated as friend by another student in the

sample. This sample of 60; 495 students forms our �is/has friend sample�. To construct our

�fully networked sample�we recursively eliminate students who do not nominate as friend a

student in the remaining sample and students who are not nominated as friend by a student

in the remaining sample. This recursive elimination leaves a sample of 42; 827 observations.21

Descriptive statistics for networks in the two employed samples are shown in Table A.1.

Fully Networked Sample Is/Has Friend Sample
Number of Networks (N) 486 489

Observations (
PN

k=1 nk) 42; 827 60; 495

Network Parameters (
PN

k=1 n
2
k) 6; 287; 061 12; 298; 399

Network Sizes: Median [Min, Max] 75 [2; 410] 103 [2, 484]
Nominated Friends: Median [Min, Max] 3 [1; 10] 3 [0; 10]
Nominated as Friend: Median [Min, Max] 3 [1; 32] 3 [0; 35]

Table A.1. Descriptive Statistics: Networks.
21The �Network Sample�with 49; 559 observations in Lin (2010) is constructed by recursively elimating

only students who do not nominate as friend a student in the remaining sample.
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The employed measure of income expectations y_Income_Expectations is constructed

from responses to the question �On a scale from "No chance" to "It will happen" what do you

think are the chances you will: Have a middle-class family income by age 30?�The employed

measure of college completion expectations y_College_Expectations is constructed from

responses to the question �On a scale from "No chance" to "It will happen" what do you

think are the chances you will: Graduate from college?� The distributions for these variables

are shown in Table A.2. For both variables the scale indicated in the questionnaire consists

of integers 0 through 8 with values 0, 2, 4, 6 and 8 labeled as shown in Table A.2. For

observations with missing/invalid information on either variable we set the value of the

variable equal to the mean value of the variable in the data.

y_Income_Expectations y_College_Expectations

Fully Networked Is/Has Friend

Sample Sample

Fully Networked Is/Has Friend

Sample Sample

0 - �No chance� 3:62% 4:30% 2:03% 2:62%

1 1:91% 2:03% 0:74% 0:92%

2 - �Some chance� 8:26% 8:61% 3:45% 4:06%

3 2:76% 2:80% 0:85% 0:98%

4 - �About 50-50� 19:10% 18:97% 6:35% 6:99%

5 5:70% 5:35% 1:84% 1:93%

6 - �Pretty likely� 23:81% 22:65% 12:52% 12:54%

7 11:78% 10:87% 10:55% 9:83%

8 - �It will happen� 19:06% 18:76% 48:50% 45:80%

Missing/invalid 4:02% 5:66% 13:18% 14:32%

Table A.2. Descriptive Statistics: Distributions of dependent variables.

Construction of the employed explanatory variables from the raw Add Health data is

self-explanatory except for dummy variable x_Mom_College [x_Dad_College], which

is set equal to 1 if respondent indicates that resident mother [resident father] graduated

from college/university or has professional training beyond a 4-year college, for dummy

variable x_Mom_Professional [x_Mom_Professional], which is set equal to 1 if re-

spondent indicates that resident mother [resident father] is a professional of type 1 (doc-

tor/lawyer/scientist), professional of type 2 (teacher/librarian/nurse), or a manager/executive,

and for dummy variable x_Mom_White_Collar [x_Dad_White_Collar], which is set

2



equal to 1 if respondent indicates that resident mother [resident father] a professional of type 1

(doctor/lawyer/scientist), professional of type 2 (teacher/librarian/nurse), manager/executive,

technical/computer specialist/radiologist, o¢ ce worker/book keeper/clerk/secretary, or sales

worker/insurance agent/store clerk. The mean value of each explanatory variable is shown

in Table A.3.

Fully Networked Sample Is/Has Friend Sample
x_GPA 2:90 2:84
x_Age 14:92 15:00
x_Female 0:56 0:53
x_Asian 0:06 0:06
x_Black 0:15 0:17
x_Hispanic 0:11 0:13
x_Mom_College 0:29 0:29
x_Dad_College 0:28 0:27
x_Mom_Professional 0:29 0:27
x_Dad_Professional 0:23 0:22
x_Mom_White_Collar 0:54 0:52
x_Dad_White_Collar 0:34 0:32
x_Parent_Homemaker 0:16 0:16
x_Parent_Military 0:04 0:04

Table A.3. Descriptive Statistics: Mean values of explanatory variables.

Standard deviations and correlations for selected variables are shown in Tables A.4 and

A.5. The results illustrate the issue mentioned in Section 4.1.4 that one problem with using

variables GGx_some_variablek and GGGx_some_variablek constructed from exogenous

variables as instrumental variables for the endogenous social interaction regressor is that iden-

tifying variation in these variables is limited. As Table A.4 demonstrates, variation in vari-

able Ghx_some_variablek decreases as h increases. This occurs because the set of friends�

friends�friends is more similar across observations than the set of friends or the set of friends�

friends. Table A.5 in turn demonstrates that in the is/has friend sample correlation between

variables Ghx_some_variable and Ghx_some_other_variable increases as h increases.

This occurs because the values of Ghx_some_variableki and Ghx_some_other_variableki,

where h � 2, are in large part determined by whether the friends, friends�friends, and friends�
friends�friends of individual ki have any friends themselves. If many of the friends, friends�

friends, and friends�friends�friends of individual ki do not have any friends themselves, the

value of both Ghx_some_variableki and Ghx_some_other_variableki; where h � 2, is

close to zero for the individual ki.
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Fully Networked Sample Is/Has Friend Sample
x_Mom_College 0:43 0:42
Gx_Mom_College 0:28 0:28
GGx_Mom_College 0:21 0:21
GGGx_Mom_College 0:18 0:18

Table A.4. Descriptive Statistics: Standard deviations for selected variables.

x_Dad_College Gx_Dad_C: GGx_Dad_C: GGGx_Dad_C:
x_Mom_College 0:38
Gx_Mom_Coll: 0:52
GGx_Mom_Coll: 0:66
GGGx_Mom_Coll: 0:73

Table A.5. Descriptive Statistics: Correlations for selected variables in the is/has friend
sample.
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Implementation Appendix

Interaction structure Gk for each network is constructed from the friendship denomination

data. An auxiliary interaction matrix Wk is �rst constructed by setting (Wk)ij = 1 if

student i in network k has nominated student j in the same network k as friend and by

setting (Wk)ij = 0 otherwise. The actual interaction structure Gk is then constructed using

the normalization (Gk)ij = (Wk)ij =
Pn

j=1 (Wk)ij for all (i; j) for which (Wk)ij = 1 and by

setting (Gk)ij = 0 for all (i; j) for which (Wk)ij = 0:

We set f�0:99;�0:9;�0:8; :::; 0:8; 0:9; 0:99g as the grid of feasible values of parameter
�: For each feasible value ~� in this grid, whether the feasible value ~� is included in the

con�dence set estimate 	0:95 (�) is determined in 5 steps (corresponding to the 5 steps in

Section 3.1):

Step 1. Calculate equilibrium in�uence matrix ~Ek =
�
I � ~�Gk

��1
for each observed net-

work Gk (there are 486 networks in the fully networked sample and 489 networks in

the is/has friend sample).

Step 2. First solve the constrained linear optimization problem (13) for each observed net-
work Gk to obtain a conditionally balanced interaction structure ~Gk for each observed

network Gk. Parameters lb; ub and c are set as mentioned at the end of Section 3.3.

Then combine the constructed interaction structures ~Gk and observations on the en-

dogenous outcome variable Yk to construct variable ~GkYk.

Steps 3-4. Use the constructed variable ~GkYk as an instrumental variable for the endoge-
nous regressor GkYk to obtain a potential instrumental variable estimate �̂IV (�̂) of

parameter � in equation (1).

Step 5. Use the potential instrumental variable estimate �̂IV (~�) and the associated standard

error S:E:(�̂IV (�̂)) to construct the con�dence interval (�̂IV (�̂) � 1:96� S:E:(�̂IV (�̂));
�̂IV (�̂) +1:96�S:E:(�̂IV (�̂))). Given the inconsistency of standard heteroskedasticity-
robust standard errors in the presence of �xed e¤ects (Stock and Watson, 2008), we

employ cluster-robust standard errors with clustering at the network level. The im-

puted feasible value ~� is included in the con�dence set estimate 	0:95 (�) if the con-

structed con�dence interval contains the imputed value ~� i.e. if ~� 2 (�̂IV (�̂) � 1:96�
S:E:(�̂IV (�̂)); �̂IV (�̂) + 1:96� S:E:(�̂IV (�̂))),

For any feasible value � that falls between two adjacent feasible values ~�LOWER and
~�HIGHER in the selected grid of feasible values of parameter �, we use linear interpola-
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tion to determine whether the feasible value is included in the con�dence set estimate. Let
~�
LOWER

CI_L_BOUND and ~�
LOWER

CI_U_BOUND (~�
HIGHER

CI_L_BOUND and ~�
HIGHER

CI_U_BOUND) denote the lower and

upper bounds of the con�dence interval implied by the potential instrumental variable esti-

mate computed using imputed value ~�LOWER (~�HIGHER). The lower and upper con�dence

interval bounds �CI_L_BOUND and �CI_U_BOUND associated with any parameter value �

that falls between the adjacent values ~�LOWER nor ~�HIGHER in the selected grid of feasible

values of parameter � are then constructed using expressions

�CI_L_BOUND = ~�
LOWER

CI_L_BOUND

+(~�
HIGHER

CI_L_BOUND � ~�
LOWER

CI_L_BOUND)
� � ~�LOWER

~�HIGHER � ~�LOWER

(75)

and

�CI_U_BOUND = ~�
LOWER

CI_U_BOUND

+(~�
HIGHER

CI_U_BOUND � ~�
LOWER

CI_U_BOUND)
� � ~�LOWER

~�HIGHER � ~�LOWER

: (76)

The feasible value � 2 (~�LOWER; ~�HIGHER) is included in the con�dence set estimate

	0:95 (�) if the interpolated con�dence interval contains the feasible value � i.e. if � 2
(�CI_L_BOUND; �CI_U_BOUND).

For other model parameters the con�dence set estimate is constructed as a union of all

those con�dence intervals for each parameter that are implied for the parameter by any

potential instrumental variable estimate calculated using an imputed value ~� that is either

included in the con�dence set estimate 	0:95 (�) or is adjacent to an imputed value that is

included in the con�dence set estimate 	0:95 (�). Hence, we do not use linear interpolation

in construction of con�dence set estimates for other model parameters.
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Background Appendix: Motivation and Related Litera-

ture for Analyses of Subjective Expectations

The rationale for the analysis and measurement of subjective expectations arises because

observed choices are consistent with di¤erent combinations of preferences and expectations,

and because solving this conundrum merely by assuming a speci�c form for expectations�

such as rational expectations�is often implausible (Manski, 2004). With this motivation

in mind, the literature on measurement of subjective expectations and on the impact of

subjective expectations on outcomes has grown considerably during the last two decades.22

An important motivation for the study of subjective income expectations more specif-

ically is to attain better analyses of consumption/savings decisions. For example, Guiso

et al. (1992) use data on subjective income expectations to �nd that income uncertainty

is not as important a determinant of precautionary saving than had been implied by prior

studies based on indirect measures of income risk. Regarding the study of college expecta-

tions, an important rationale is that educational expectations may in�uence later educational

outcomes. For example, Jacob and Wilder (2010) �nd a positive relationship between ed-

ucational expectations and attainment among adolescents although they caution against

interpreting either their own or related prior �ndings as evidence of causal e¤ects.

The literature on the determinants of subjective income expectations include Dominitz

and Manski (1996, 1997a), Blau and Ferber (1991), and Smith and Powell (1990), and Nichol-

son (2004). To our knowledge none of the contributions to this literature has examined the

role of peer in�uence in the formation of income expectations. Contributions that examine

the formation of subjective college completion or attendance expectations include Davies and

Kandel (1981), Fischho¤ et al. (2000), Kiuru et al. (2009) and Jacob and Wilder (2010).

While Jacob and Wilder (2010) do not examine peer e¤ects, the other three papers �nd that

an individual�s college expectations are correlated with the individual�s peers�college expec-

tations. An important aspect in many of these studies and in our study is that the subjects

are adolescents. While ex-ante one might not expect adolescents to form sensible subjective

expectations, prior studies have generally found that with the exception of subjective ex-

22Early contributions�such as Juster and Suzman (1995), Hurd and McGarry (1995), Dominitz and Manski
(1997a, 1997b) and Manski (1993a)�during this surge of analyses focused mostly on methodological questions
surrounding the measurement of expectations. Consistent with the long-term objective of this research
program (as stated by Manski, 2004), some recent applications, including the analyses of retirement, crime,
and contraception by Hurd et al. (2002), Lochner (2004) and Delavande (2008), respectively, have built on
the earlier contributions to study the impact of expectations on outcomes. Yet another important strand of
the expectations literature is the study of the determinants of the di¤erences between subjective expectations
and outcomes (see e.g. Souleles, 2004, and Jacob and Wilder, 2010).
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pectations about mortality, the adolescents�subjective expectations are largely sensible (see

Manski, 2004, Dominitz and Manski, 1996, and Fischho¤ et al., 2000). Moreover, Quadrel et

al. (1993) compare the risk perceptions of adolescents and their parents and conclude that

their di¤erences in cognitive decision-making processes are small, and Jacob and Wilder

(2010) �nd support for the conclusion that adolescents form informed college expectations

as they �nd that expectations are revised based on factors such as changes in grades and

having a child.

The rationale for the inclusion of peer e¤ects as possible determinants of subjective income

and college expectations among adolescents is rooted in various theories that predict that

an adolescent�s choices are in�uenced by the choices and characteristics of the individual�s

peers, corresponding to the endogenous and exogenous social interaction e¤ects, respectively.

These include contagion based theories of problem behavior, role model and collective moni-

toring based theories, competition based theories, and relative status based theories (see e.g.

Brooks-Gunn et al., 1993, and the references therein). Underlying our analysis of peer e¤ects

in the formation of subjective income or college completion expectations is a conjecture that

some of these same mechanisms or yet another possibly information or social complemen-

tarity based mechanism may also induce also an adolescent�s subjective expectations to be

in�uenced by the individual�s friends�subjective expectations and characteristics.23

23For example, if role models or information obtained from peers are important in the formation of sub-
jective income expectations, an adolescent whose friends�parents are teachers, doctors or other professionals
may be more inclined to expect to attain middle-income status than an adolescent whose friends�parents are
unemployed. Similarly, if information obtained from peers or social complementarities are important in the
formation of educational expectations, an adolescent whose friends expect to complete college may be more
inclined to expect to complete college than an adolescent whose friends do not expect to complete college.
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