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Abstract

I investigate the asymptotic distribution of linear quantile regression coefficient estimates when the

parameter lies on the boundary of the parameter space. In order to allow for inferences made across

many conditional quantiles, I provide a uniform characterization of constrained quantile regression

estimates as a stochastic process over an interval of quantile levels. To do this I pose the process of es-

timates as solutions to a parameterized family of constrained optimization problems, parameterized

by quantile level. A uniform characterization of the dual solution to these problems — the so-called

regression rankscore process — is also derived, which can be used for score-type inference in quantile

regression. The asymptotic behavior of quasi-likelihood ratio, Wald and regression rankscore pro-

cesses for inference when the null hypothesis asserts that the parameters lie on a boundary follows

from the features of the constrained solutions.
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1 Introduction

Quantile regression is a standard tool for investigating the relationship between covariates and the dis-

tribution of a response variable. Some research has investigated quantile regression estimation when

coefficients are subject to inequality constraints. For example, penalized spline estimation for condi-

tional quantile functions subject to qualitative constraint such as monotonicity has been developed in

Koenker and Ng (2005), and estimation and bootstrap inference for isotonic quantile regression was in-

vestigated in Abrevaya (2005). Furthermore, the general methods developed in Andrews (2001) apply

to inference for quantile regression coefficients made at a single quantile level. However, asymptotic in-

ference for inequality constrained quantile regression estimates that is suited to simultaneous inference

over several quantile levels has not been investigated. In this paper I provide an asymptotic charac-

terization of linear quantile regression estimates as a stochastic process in quantile level — thereby

addressing simultaneous inference over several quantiles — when the estimates are made under the

imposition of inequality constraints.
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Asymptotics for the normal location problem under constraints have been very well studied, and

a detailed exposition is available in a series of well known monographs (Barlow et al., 1972; Robert-

son et al., 1988; Silvapulle and Sen, 2005). Asymptotic properties of the quantile regression estimator

for a single quantile level and other M-estimators under constraints are discussed in Geyer (1994) and

Andrews (1999). Andrews (2001) provides a very general approach to tests based on these estimates.

However, quantile regression has a rather special feature among M-estimators: an analyst may be con-

cerned with simultaneous inference for multiple (even an interval of) quantile levels. In order to apply

to hypotheses on all relevant configurations of quantile levels, the quantile regression objective function

and its solution are considered as stochastic processes over a set of quantile levels T = [ε, 1 − ε] for

some ε ∈ (0, 1/2). This mirrors the inference processes developed in Koenker and Machado (1999)

except that here estimates are made under the imposition of inequality constraints.

In the next section some technical tools are established that are necessary for dealing with the

asymptotics of constrained quantile regression objective function processes and estimate processes. In

Section 3 the dual solution of the constrained coefficient estimation problem is introduced, which is

called the constrained regression rankscore process, and is shown to provide a uniform approximation

to the subgradient of the objective function process. In Section 4 asymptotic theory for the distribution

of constrained estimates is used to propose three inference processes that serve as generalizations of

likelihood ratio, Wald and score or Lagrange multiplier tests of linear restrictions to tests over quan-

tile levels contained in the index set T . An appendix contains information on constrained parameter

subvectors, some technical results about regression rankscores and two small simulation experiments

illustrating the behavior of supremum- and L2-norm test statistics based on the inference processes

developed in Section 4.

2 Asymptotic theory for constrained coefficient estimates

Consider a linear model for the conditional quantile function of the response variable Y ∈ R given

covariates X ∈ Rp:

QY |X (τ|X = x) = x>β(τ) (1)

where β(τ) ∈ Rp. Assuming this is a reasonable description of the data, the linear quantile regression

estimator can capture features of the conditional distribution of Y given X in a parsimonious fash-

ion. Suppose that a researcher maintains the hypothesis that β(τ) lies in some subset of Rp and es-

timates coefficients under this hypothesis. For example, estimation techniques developed in Koenker

and Ng (2005) can be used to estimate quantile regressions under the inequality-constrained hypothesis

Rβ(τ) ≥ r with R ∈ Rq×p, q ≤ p and r ∈ Rq. Inference may be conducted under the maintained hy-

pothesis K : Rβ(τ) ≥ r, testing the null and alternative hypotheses H0 : Rβ(τ) = r vs. H1 : Rβ(τ) > r.

Alternatively the maintained hypothesis may be K : Rβ(τ) ∈ Rp with null and alternative hypotheses

H0 : Rβ(τ)≥ r vs. H1 : Rβ(τ) 6≥ r.

The quantile function of a distribution is the solution to a convex optimization problem. Specifically,

suppose that Y is a univariate random variable with quantile function Q and define the objective function
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ρτ(u) = u(τ − I(u < 0)), where I(A) = 1 when event A is true and is zero otherwise. Then Q(τ) =

argminm E [ρτ(X −m)] (Koenker, 2005, Section 1.3). Given a sample of iid realizations of the random

variable {Yi}ni=1, the τth sample quantile can be estimated by computing Q̂(τ) = argminm
1
n

∑n
i=1ρτ(Yi−

m). Quantile regression makes the leap from this univariate model to a regression model by generalizing

the location parameter in the univariate optimization problem to a linear function.

Given a sample {Yi , X i}ni=1, the τth linear quantile regression coefficient estimate is defined as

β̂(τ) = argmin
b∈Rp

n∑
i=1

ρτ
�
Yi − X>i b

�
. (2)

By varying τ one has a convenient summary of the way that covariates affect different regions of the

conditional distribution of Y , since β j(τ) =
∂
∂ X j

QY |X (τ|X ). The solution path over τ also represents the

set of solutions to a parametric family of optimization problems where the parameter is τ ∈ T .

A substantial literature has described inference methods for the solution to (2), either at specific

quantile levels or uniformly over many quantiles. Call β̂ an unconstrained estimate of β when it is a

minimizer in Rp, as in (2). The constrained quantile regression estimator β̃(τ) for any τ ∈ T is defined

as

β̃(τ) = argmin
b∈B(τ)

n∑
i=1

ρτ
�
Yi − X>i b

�

for a B(τ) ⊂ Rp such as B(τ) = {β : Rβ ≥ r}. One may be interested in inference for several quantiles

at once — for example, whether ∂
∂ X j

QY |X (τk|X ) > 0 over several {τk}, where an analyst imposes the

maintained hypothesis that β̃ j(τk) ≥ 0 for all k in estimation. For a complete asymptotic description

it is most appropriate to develop inference methods for β̃ as a stochastic process in which intervals of

quantile levels τ ∈ T may be considered. The main challenge in considering the constrained quantile

regression process is that given a finite sample the set of binding constraints is random and depends on

the observed sample and the desired quantile level.

The epigraph of the quantile regression objective function is a tractable starting point for the analysis

of constrained quantile regression solutions. Recall that the epigraph of a function f : Rk → R is

the set epi f :=
�
(x ,α) ∈ Rk+1 : α≥ f (x)

	
. For any k ≥ 1 let F(Rk) be the collection of all closed

sets in Rk. Functions are identified with their epigraphs and thereby asymptotic properties depend on

the convergence of a sequence of epigraphs, which are elements of F(Rk+1). A convenient metric for

measuring distance is the Attouch-Wets metric dF : F(Rk)×F(Rk)→ R defined here by

dF (A, B) =
∞∑
j=1

1
2 j

sup
d(x ,0)< j

|d(x , A)− d(x , B)| ∧ 1,

where d : Rk×F(Rk)→ R is the Euclidean distance function d(x , C) =miny∈C ‖x − y‖ (Beer, 1993, p.

79). This metric makes it possible to discuss the convergence of one epigraph to another, which is called

epi-convergence. In Euclidean spaces, convergence of a sequence of epigraphs in the Attouch-Wets sense

is equivalent to convergence in the sense of Painlevé-Kuratowski (Beer, 1993, Theorem 5.2.10). That is,
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the convergence of a sequence of sets {An} to a limit set A is equivalent to the following two conditions:

(i) for all x ∈ A there is a sequence {xn} with xn ∈ An for each n such that xn → x and (ii) for each

sequence {xn} with xn ∈ An for each n, there is a subsequence xnk
such that xnk

→ x ∈ A.

Definition 1 (Epi-convergence). Suppose that { fn} and f are lower semicontinuous functions mapping

Rp to R. Then { fn} epi-converges to f , written fn
epi→ f , if and only if limn→∞ dF (epi fn, epi f ) = 0.

Epi-convergence is useful because it is an intermediate concept between the pointwise convergence

of functions, which is too weak a concept to describe uniform asymptotic behavior, and uniform conver-

gence, which is too strong because it does not allow for infinite function values, which is the technical

means by which constraints are modeled. When the functions involved in epi-convergence are them-

selves all bounded, epi-convergence is equivalent to uniform convergence on the space of bounded

functions equipped with the supremum metric. Bücher et al. (2014) Sections 2, 3 and Appendix B offer

a compact introduction to related issues and Royset (forthcoming) additionally provides results that are

relevant to statistical properties.

The concepts of convergence in probability and weak convergence in this space have the usual defini-

tions for any (pseudo)metric space (van der Vaart and Wellner, 1996, for example). Consider a sequence

of function { fn} and a limiting f . Then fn epi-converges in probability to f if limn P {dF (epi fn, epi f )> ε} →
0 for each ε > 0, where probability is implicitly outer probability to avoid measurability issues. This

will be denoted fn
p→ f . Weak convergence of fn to f is equivalent to several criteria (van der Vaart

and Wellner, 1996, Theorem 1.3.4) interpreted in the pseudometric space (F , dF ). When processes are

uniformly bounded weak epi-convergence is equivalent to using the space of bounded functions with

the uniform metric, that is, it is equivalent to the weak convergence in `∞(Rp) as described in van der

Vaart and Wellner (1996). In the applications of this theory below, the convergence of the quantile re-

gression objective function occurs in the general epi-convergent sense, while for other bounded objects

like quantile regression solutions and inference processes, convergence is equivalent to convergence in

the space of bounded functions, and for this reason, epi-convergence in probability is denoted fn
p→ f

and weak epi-convergence is written fn ; f .

The following assumptions and definitions on the data generating process are fairly standard in the

quantile regression literature (Koenker, 2005; Angrist et al., 2006).

A1 For each i = 1, . . . n the sample observations {Yi , X i}ni=1 are iid, where Yi ∈ R, X i ∈ Rp. Assume X

contains an intercept and

QY |X (τ|X = X i) = X>i β0(τ). (3)

A2 FY |X has uniformly continuous density fY |X which satisfies 0 < fY |X (y|X ) <∞ over the set {y :

0 < FY |X (y|X ) < 1} uniformly in X . Let T ⊆ [ε, 1− ε] for ε ∈ (0,1/2), and assume T ⊂ {y : 0 <

FY |X (Y |X )< 1} uniformly in X .

A3 D = E
�
X X>

�
is a positive definite matrix.

A4 H(τ) = E
�

fY |X (QY |X (τ|X ))X X>
�

is a positive definite matrix.
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A5 E
�‖X‖4�<∞.

Assumption A5 could be weakened to a bound on the 2+ηmoment of X for some η > 0 if one were

only concerned about the objective surface and coefficient estimates, but a bound on the fourth moment

of X is needed for the uniform consistency of covariance matrix estimators (Angrist et al., 2006, Section

A.1.4). The next two assumptions about the constraints imposed on the true coefficient function β0

are new additions to the list. Note that β is a function of τ ∈ T so the constraint set B is a set-valued

correspondence indexed by τ ∈ T . To discuss dependence on a specific τ ∈ T call β(τ) ∈ Rp marginal

regression coefficients and B(τ) marginal constraint sets. Finally, recall that if C ⊆ Rk is a cone with

vertex at v, then x ∈ C implies λ(x − v) + v ∈ C for all λ≥ 0.

A6 β0(·) (as a function in T ) lies in a closed constraint set B(·) ⊆ Rp×T . For each τ ∈ T , the marginal

B(τ) is convex. As n→∞, dF (
p

n(B− β0), TB(β0))→ 0 for some TB(β0) ⊆ Rp × T .

A7 TB(β0) is a product set: TB(β0) = C × T where C ⊆ Rp is a convex cone with vertex at 0p.

Assumptions A6 and A7 require that the recentered and scaled constraint set
p

n(B−β0) ∈ F(Rp ×
T ) can be approximated locally around the true β0 by a tangent set that is invariant in τ. The lack

of dependence on τ may be restrictive, but it avoids situations where the tangent set is not stable

over T that can lead to discontinuities in the distributions of stochastic processes used for testing1.

Assumption A7 generalizes the approximation of constraint sets by cones in the sense of Chernoff (Geyer,

1994, Theorem 2.1). Note that TB is not itself a cone because in one direction it is an interval, but by

assumption the constraint set is marginally conical at each τ ∈ T . The constraint set is assumed to be

fixed but given the general applicability of the epi-convergence concept, assumption A6 could be relaxed

to a sequence of constraints that converge appropriately to TB(β0) (see for example Geyer (1994) about

regularity in the convergence of sets to their tangent cones for a fixed quantile level).

It is convenient to reparameterize β̃ as δ̃ =
p

n(β̃ − β0(·)). If δ̃ is the minimizer of the objective

function defined below then β̃ = δ̃/
p

n+β0 is the minimizer of the usual quantile regression objective

function.

Theorem 2.1. For (δ,τ) ∈ Rp × T , define

Zn(δ,τ) =





∑n
i=1

�
ρτ(Ui − X>i δ/

p
n)−ρτ(Ui)

�
, δ ∈ pn(B(τ)− β0(τ))

+∞ otherwise

1Here is a simple example in which τ-dependence of the tangent set is problematic: let B(τ) = R2
+ for all τ and β0(τ) =

[(1/2−τ)+, (τ− 1/2)+]. Then the set TB(β0) ⊂ R2 × T (recall T = [ε, 1− ε]) and dF (
p

n(B− β0), TB(β0))→ 0 with

TB(β0) = (R×R+ × [ε, 1/2))∪
�
R2
+ × {1/2}

�∪ (R+ ×R× (1/2, 1− ε]) .
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where the quantile-specific errors Ui = Yi −QY |X (τ|X i), and define

Z(δ,τ) =




−δ>G(τ) + 1

2δ
>H(τ)δ, δ ∈ C

+∞ otherwise

where G is a Gaussian process on [0, 1]p with mean zero and Cov (G(s), G(t)) = (s ∧ t − st)D. Under

Assumptions A1-A7, Zn ; Z in (F , dF ).

Theorem 2.1 expresses the quantile regression objective function as a stochastic process in tau,

or viewed in another light, as a parametric family of constrained minimization problems in δ with

τ as the parameter. The proof of Theorem 2.1 uses results in Kato (2009) about argmin processes

and epi-convergence results of Geyer (1994) and Rockafellar and Wets (1997). Theorem 2.1 shows

that the objective function has a uniform quadratic approximation that applies to each value of τ and

simultaneously provides the main ingredient in the
p

n-consistency result (shown below) that is often

stated as a preliminary lemma in the constrained inference literature, for example in Silvapulle and Sen

(2005, Lemma 4.2.3).

For each n define the solution mapping δ̃n(·) : T → Rp for each τ by

δ̃n(τ) = argmin
δ∈pn(B(τ)−β0(τ))

Zn(δ,τ).

Analogously define δ̃ : T → Rp for each τ by

δ̃(τ) = argmin
δ∈C

Z(δ,τ).

Theorem 2.2 below shows that the sequence of finite-sample minimizer processes δ̃n converges weakly

to the asymptotic minimizer δ̃, and that the value function processes converge weakly as well. Because

Z depends continuously on τ, the sequence of minimizers can be interpreted as a sequence of stochastic

processes in `∞(Rp) that converges weakly to a continuous limit (Rockafellar and Wets, 1997, Theorem

2.6 and Corollary 7.43).

Theorem 2.2. Under Assumptions A1-A7

(a) δ̃n ; δ̃.

(b) Zn(δ̃n, ·); Z(δ̃, ·).

By reparameterizing from δ̃n back to β̃ , part (a) implies that β̃ is a uniformly
p

n-consistent estimator

of β0. This argument follows the same order as in Kato (2009) and is slightly different from other

analyses that start by showing the consistency of the estimator and then show its asymptotic normality.

Note also that the constrained estimator can not in general have an asymptotically normal distribution,

because of the potential of binding constraints.
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Theorems 2.1 and 2.2 apply to a stochastic process of minimization problems. A little manipulation

allows one to characterize the distribution of the limiting δ̃ in a more enlightening way. Lemma 2.3

focuses on characterizing the objective function and the value function at a single quantile, making it

similar to many well known results in the constrained inference literature. The main difference is that

the characterizations below hold uniformly in τ.

Lemma 2.3. Assume A1-A7. Define the stochastic process W ∈ C(T )p by W (·) = H−1(·)G(·), where G

was defined in Theorem 2.1. Then

(a) Z(δ,τ) = 1
2

�
(δ−W (τ))>H(τ) (δ−W (τ))− G>(τ)H−1(τ)G(τ)

�

(b) δ̃(τ) = argminδ∈C (δ−W (τ))>H(τ) (δ−W (τ))

(c) Z(δ̃(τ),τ) = −1
2 δ̃
>(τ)H(τ)δ̃(τ).

If β0(τ) is in the interior of B(τ), then C = Rp and the optimum of the resulting unconstrained

quadratic program can be found analytically, and δ(τ) =W (τ) ∼ N
�
0,τ(1−τ)H−1(τ)DH−1(τ)

�
, the

asymptotic distribution for the unconstrained quantile regression estimator.

3 Constrained regression rankscore processes

The quantile regression estimation problem is conveniently posed as an L1 minimization problem and as

such it has a dual maximization problem. Gutenbrunner and Jurečková (1992) showed that the solution

to this dual problem, taken as a stochastic process in τ, is useful for inference and L-estimation, and

they called it the regression rankscore process. Roughly speaking, the vector of τth regression rankscores

can be fashioned into a score statistic for the τth quantile regression coefficient estimate. Gutenbrunner

et al. (1993) extended this methodology to tests for linear restrictions in quantile regression models

and Koenker and Machado (1999) extended this to rankscore processes for uniform inference over

an interval of quantile levels. Inference using constrained regression rankscores — that is, the dual

solution to the constrained quantile regression problem — have not been previously considered. Here

the constraint set is specialized to a set of linear inequality constraints and properties of the dual solution

that are useful for inference on constrained quantile regression coefficients are explored.

Given a sample of size n let Y ∈ Rn be a vector of response observations and X ∈ Rn×p collect the

observations with each X>i laying in the corresponding row of X . Specialize the constraint set B(τ) to

the marginally linear form B(τ) = {β ∈ Rp : Rβ ≥ r}, where R ∈ Rq×p has rank q ≤ p and r ∈ Rq.

Estimation of quantile regression coefficients under linear inequality constraints has been considered in

Portnoy and Koenker (1997); Koenker and Ng (2005)2. Specifically, the (primal) constrained quantile

regression problem for any quantile level τ can be written as

min
u,v,b

�
τ1>n u+ (1−τ)1>n v : Y = X b+ u− v, Rb ≥ r, u, v ≥ 0n

	

2The primal solution can be found using the R package quantreg — specifically, the estimator is implemented in
quantreg’s functions rq.fig.fnc and rq.fit.sfnc.
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letting u and v represent positive and negative quantile residuals in estimation. Define

X̃ =

�
X

R

�
∈ R(n+q)×p, Ỹ =

�
Y

r

�
∈ Rn+q.

Then the dual of the constrained minimization problem can be written (see the Appendix for more

details)

max
λ

�
Ỹ>λ : X̃>λ= 0p+q,λ ∈ [τ− 1,τ]n ×Rq

+

	
. (4)

The solution to this problem (as a function of τ) is called the constrained regression rankscore process

λ̃n(τ) = [λ̃>1n(τ), λ̃
>
2n(τ)]

>. λ̃n is an (n+ q)-dimensional stochastic process that can be subdivided into

λ̃1n ∈ [τ − 1,τ]n and λ̃2n ∈ Rq
+ for each τ. The λ̃1n coordinates act like unconstrained regression

rankscores, while the λ̃2n coordinates correspond to Lagrange multipliers that are associated with the

inequality constraints imposed in the constrained problem.

Since the quantile regression optimization problem is a linear programming problem with linear

constraints, it has a solution at one vertex or a convex combination of several vertices, denoted the

p basic sample observations or constraints for that solution. To discuss the set of basic elements of X̃

and Ỹ , let H denote the collection of p-element subsets of {1, 2, . . . , n, n + 1, . . . n + q}. Each h has a

complement in H denoted h̄ := {1, . . . , n+ q}/h. Let X̃ (h) := {X̃ i,· : i ∈ h} and Ỹ (h) := {Ỹi : i ∈ h}. Also

define h1 = h∩{1,2, . . . n}, h̄1 = h̄∩{1,2, . . . n}, h2 = h∩{n+1, . . . , n+q} and h̄2 = h̄∩{n+1, . . . , n+q}.
h indexes all the basic elements of X̃ and Ỹ , while h1 and h2 index which elements of the design matrix

or constraint matrix are basic.

Because the quantile regression problem is feasible, it has at least one solution (there may in general

be a hypersurface of solutions), resulting in the following fact, which mirrors Theorem 3.1 of Koenker

and Bassett (1978). Assuming rank(X̃ ) = p, the set of solutions to the primal problem (3) has at least

one element of the form

β̃(τ) = X̃ (h)−1Ỹ (h)

for some h ∈ H with rank(X̃ (h)) = p (the full set of solutions is the convex hull of all such vertex

solutions). An important consequence of this solution is that exactly p elements of (X̃ , Ỹ ) go into the

solution β̃ , not elements in (X , Y ). In other words, only observations indexed by h1 will be fit exactly

by the estimated regression plane — i ∈ h1 implies Yi = X>i β̃(τ). Similarly, constraints indexed by

h2 hold exactly — that is, i ∈ h2 implies Ri,·β̃(τ) = ri . The configuration of any given sample makes

the number of binding constraints on β̃ random, and because card(h1) + card(h2) = card(h) = p, the

number of exactly-interpolated sample observations is also random, in contrast to the unconstrained

quantile regression estimator.

Regression rankscores can be manipulated to provide a variety of different tests (Gutenbrunner

et al., 1993, Section 2) but for the inference processes for quantile regression considered below it is

convenient to use λ̃ directly without reparameterization. The random variable used for inference in

the subsequent section uses only the contributions from the λ̃1n subvector. This relies on the fact that

λ̃1ni(τ) is with a high probability identical to τ− I(Yi < X>i β0(τ)), which is a subgradient function for
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the quantile regression objective function marginally at τ.

Lemma 3.1. Let ψτ(u) = τ− I(u< 0). Under assumptions A1-A7,

sup
τ∈T







1p
n

n∑
i=1

X iλ̃1ni(τ)−
1p
n

n∑
i=1

X iψτ(Yi − X>i β̃(τ))






= oP (1) .

Lemma 3.2 formulates a relationship between the subgradient of the objective function (at β̃ and

β0) and the coefficient estimate. It is used (together with Lemma 3.1) in the next section to provide an

asymptotic description for regression rankscore statistics, which are the quantile regression analog of a

score statistic.

Lemma 3.2. Let ψτ(u) = τ− I(u< 0). Under assumptions A1-A7,

sup
τ∈T







1p
n

n∑
i=1

X iψτ(Yi − X>i β̃(τ))−
1p
n

n∑
i=1

X iψτ(Yi − X>i β0(τ)) +H(τ)
p

n(β̃(τ)− β0(τ))






= oP (1) .

Lemma 3.2 is similar to Theorem 1 of Gutenbrunner and Jurečková (1992) (see also Theorems

3.1-3.3 of Gutenbrunner et al. (1993)) but tailored to the constrained quantile regression estimator.

It is also akin to the Bahadur representation — that is, an asymptotically linear representation — for

unconstrained quantile regression estimates (Koenker, 2005, Section 4.3), although one should not

expect an asymptotic linear form to hold for estimates that do not have an asymptotically normally

distribution. The typical Bahadur representation would not have the first term in the previous display,

which is negligible when estimates are unconstrained. However, equation (4) implies X>λ̃1n(τ) =

−R>λ̃2n(τ). That is, unlike unrestricted regression rankscores, X>λ̃1n is not generally equal to zero.

4 Inference processes and their asymptotic distributions

The inference processes considered here were investigated in Koenker and Machado (1999), except that

here inequality-constrained estimates are used. As in Section 3, the hypotheses below are simplified to

polyhedra defined by linear inequalities. Focusing on just these polyhedral constraints implies some

simplification. Specifically let R ∈ Rq×p for q ≤ p and let r ∈ Rq. Assume rank(R) = q. Type A

hypotheses have maintained hypothesis KA : Rβ0(τ) ≥ r for all τ ∈ T and have null and alternative

hypotheses

HA
0 : Rβ0(τ) = r for all τ ∈ T

HA
1 : Rβ0(τ0)> r for some τ0 ∈ T .

Type B hypotheses have maintained hypothesis KB : β(τ) ∈ Rp for all τ ∈ T and null and alternative

HB
0 : Rβ0(τ)≥ r for all τ ∈ T

HB
1 : Rβ0(τ0) 6≥ r for some τ0 ∈ T .
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Common estimators are used to construct a variety of inference processes below, under either set of

hypotheses. There are three relevant coefficient estimators, labeled

β̄(τ) = argmin
b:Rb=r

∑
i

ρτ(Yi − X>i b)

β̃(τ) = argmin
b:Rb≥r

∑
i

ρτ(Yi − X>i b)

β̂(τ) = argmin
b∈Rp

∑
i

ρτ(Yi − X>i b).

The matrix D can be estimated the same way under Type A or B hypotheses: let

Dn =
1
n

n∑
i=1

X iX
>
i .

In order to impose the null hypothesis on test statistics for proper size and power in testing procedures,

two different estimates of and H are needed, which only depend on which coefficient estimator is used

in the definition. Define

H̄n(τ) =
1

nhn

n∑
i=1

K((Yi − X>i β̄(τ))/hn)X iX
>
i ,

H̃n(τ) =
1

nhn

n∑
i=1

K((Yi − X>i β̃(τ))/hn)X iX
>
i ,

where K is a kernel function and {hn} is a bandwidth sequence such that hn → 0 and
p

nhn → ∞.

Hn using the unrestricted β̂ was first suggested in Powell (1986), and given assumptions A3-A5, sec-

tion A.1.4 of Angrist et al. (2006) shows that Hn is a uniformly consistent estimator of H. Finally, the

estimated variance function of the Gaussian process W defined in Lemma 2.3 will be used as a weight-

ing matrix in several places. This estimate also depends on the maintained hypothesis via coefficient

estimate. Let

Σ̃n(τ) = τ(1−τ)H̃−1
n (τ)DnH̃−1

n (τ),

Σ̄n(τ) = τ(1−τ)H̄−1
n (τ)DnH̄−1

n (τ).

Denote the limit in probability of these estimators as Σ. When the data generating process is ho-

moskedastic, this assumption and the linear model assumption imply that the distribution of Y follows

a location-scale model: there is some density function f0 such that fY |X (y|x) = σ−1 f0((y − x>β)/σ),
and some quantile function Q0 such that QY |X (τ|x) = x>β +σQ0(τ). Then Σ is simplified by the fact

that H(τ) = σ−1 f0(Q0(τ))D. This means that the matrix Σn can be reduced to a special case: let

Σn0(τ) = τ(1−τ)σ2 Ûf −2
0 (Q0(τ))D

−1
n .

Under the assumption of homoskedasticity one may estimate the inverted density (or sparsity) function

10



in Σn0 using the proposal of Hendricks and Koenker (1992) (see Koenker and Machado (1999) for

more details). Analogous to the more general case discussed above, denote the limit in probability of

this estimator as Σ0.

Before discussing inference processes it is necessary to define their limiting process. To this end, it

may help to recall some basic facts about order-restricted inference for vector-valued parameters. In

the classical literature on order-restricted inference the χ̄2 statistic is a common limiting distribution

for likelihood ratio statistics with one estimate subject to inequality constraints. Suppose that under

the maintained hypothesis K : Rθ ≥ r for some θ ∈ Rp, R ∈ Rq×p with q ≤ p and r ∈ Rq, we wish

to test H0 : Rθ = r against H1 : Rθ > r. Suppose furthermore that given an observed sample, k of q

constraints actually hold with equality. Then asymptotic theory implies that under the null hypothesis,

the likelihood ratio statistic and related statistics converge to a χ2
k random variable. However, when

estimates are made subject to inequality constraints, the sample realizations randomly determine which

constraints bind. This implies that the asymptotic distribution under the null hypothesis is a mixture

of χ2
k variables for k ranging from 0 to q, the total number of constraints. This limiting distribution is

commonly referred to as a χ̄2 distribution (Silvapulle and Sen, 2005, p. 75). The weights in the mixture,

{wk}qk=1, can be derived analytically when the constraints are simple, but simulation is the only general

way to estimate tail probabilities from a χ̄2 distribution (Silvapulle and Sen, 2005, Sections 3.3-3.6).

In order to uniformly describe the behavior of the quantile regression process under inequality con-

straints, a stochastic process that is analogous to the χ̄2 random variable is required. Let Bk be a

continuous Gaussian process in Rk with mean zero and covariance Cov (Bk(s), Bk(t)) = (s ∧ t − st)× Ik

for s, t ∈ [0,1], that is, a vector-valued process with independent Brownian bridge processes at each co-

ordinate. Then define a scaled Bessel bridge process of order k as Qk(τ) = ‖Bk(τ)‖/
p
τ(1−τ). Finally,

define Q0 as the function that is identically zero over the unit interval. For any integer k > 0 and fixed

τ, Q2
k(τ) ∼ χ2

k . Q2
k processes with a fixed k were used in Koenker and Machado (1999) for inference

processes in unconstrained quantile regression. The asymptotic distribution of inequality-constrained

quantile regression processes is a mixture of Q2
k processes for k = 0, . . . q.

Definition 2 (Q̄2 process). Let Q̄2 : [0,1]→ R be a stochastic process

Q̄2(τ) =
q∑

k=0

wk(τ)Q
2
k(τ),

where Q0 is a function identically equal to zero, for k = 1, 2, . . . q, Qk is a scaled Bessel bridge of

order k and w : [0,1] → [0, 1]q is a weight function. Each coordinate of w satisfies wk(τ) ≥ 0 and∑q
i=1 wk(τ) = 1 for all τ.

A Q̄2 process has marginal χ̄2 distributions. The weight function depends on the constraints and

the covariance function of the process and it can generally be found by simulation.

Given the two different sets of hypotheses, two particular Q̄2 processes are relevant for inference.

Specifying them is equivalent to describing their weighting functions, which are functions in T . For type

11



A hypotheses, let M= {δ ∈ Rp : Rδ = 0q}. Then define the process Q̄2
A by its marginal distributions

P
�
Q̄2

A(τ)≤ c
	
=

q∑
k=0

wk(RΣ(τ)R
>,M)P

�
χ2

k ≤ c
	

, c > 0,

where the kth coordinate of the weight function, wk(V, S) is the probability that k constraints bind

in the minimization problem minX∈S X>V−1X where X ∼ N (0q, V ) and S is a region defined by a

polyhedral constraint cone. This means that the distribution depends on the constraints and covariance

function of the coefficient process; it is not a pivotal distribution. Type B hypotheses require a slightly

different limiting distribution: first let C = {δ ∈ Rp : Rδ ≥ 0q}, and define the Q̄2
B process with marginal

distributions

P
�
Q̄2

B(τ)≤ c
	
=

q∑
k=0

wq−k(RΣ(τ)R
>,C)P

�
χ2

k ≤ c
	

, c > 0.

In the definition of this process the weight coordinates wk are defined as in the type-A case. As will

be seen below, the Q̄2
B process is only useful under the sub-hypothesis of the type-B null where the

constraints hold with equality.

An analog of the likelihood ratio test generalized to M-estimators was suggested by Ronchetti (1982)

and denoted a ρ test. A quantile regression ρ test (for a single τ) is a true likelihood ratio test statis-

tic only under the assumption that the error distribution follows a special asymmetric Laplace density;

generally it simply measures the drop in the value function associated with more- and less-constrained

quantile regression estimation problems. Two closely related ρ processes for inference over T were

defined in Koenker and Machado (1999), for when the scale of the error distribution is respectively

known or unknown. Let V̄n(τ) =
∑

i ρτ(Yi − X>i β̄) with analogous definitions for Ṽn(τ) and V̂ (τ). Un-

fortunately, these ρ processes can only be defined for homoskedastic data, as specified in assumption B1

below. The following regularity conditions are needed to assure that the ρ processes have well defined

asymptotic properties.

B1 The conditional quantiles of Y given X are described by QY |X (τ|X ) = X>β + F−1(τ) for each

τ ∈ T .

B2 σ̃(τ) := n−1Ṽn(τ) or σ̂(τ) := n−1Vn(τ) are uniformly consistent estimators of E [ρτ(τ)] := σ(τ)

under maintained hypotheses KA and KB respectively.

Assumption B1 maintains that the data is generated according to a homoskedastic linear model Y =

Xβ+U , U ∼ F , where β is a τ-invariant vector. This implies the model of the conditional quantiles of Y

given X is the location-shift model implicit in simple mean regression models. This is quite restrictive,

but the other inference processes defined below do not require this assumption and have the same

asymptotic behavior, as described in subsequent theorems.

12



For the known-scale (set to 1 without loss of generality) case, define

LA
n(τ) =

2 Ûf0(Q0(τ))
τ(1−τ)

�
V̄n(τ)− Ṽn(τ)

�

LB
n (τ) =

2 Ûf0(Q0(τ))
τ(1−τ)

�
Ṽn(τ)− V̂n(τ)

�
.

When the scale of the error distribution is unknown, use

ΛA
n(τ) =

2nσ̃(τ) Ûf0(Q0(τ))
τ(1−τ) log

�
V̄n(τ)/Ṽn(τ)

�

ΛB
n(τ) =

2nσ̂(τ) Ûf0(Q0(τ))
τ(1−τ) log

�
Ṽn(τ)/V̂n(τ)

�
.

In the following theorems, all inference processes are bounded functions, and so weak convergence

(denoted ;) is the standard weak convergence concept for bounded functions used in van der Vaart

and Wellner (1996).

Theorem 4.1. Make Assumptions A1-A7, B1-B2. Then

(a) Under HA
0 , ΛA

n(τ) = LA
n(τ) + oP (1) and ΛB

n(τ) = LB
n (τ) + oP (1), uniformly over T .

(b) Under HA
0 , LA

n ; Q̄2
A, where Σ= Σ0.

(c) Let
p

n(β̄ − β0); δ̄ and
p

n(β̃ − β0); δ̃. Then δ̃>Σ−1
0 δ̃− δ̄>Σ−1

0 δ̄ ∼ Q̄2
A.

(d) Let
p

n(β̄ − β0); δ̄ and
p

n(β̃ − β0); δ̃. Suppose that δ can logically be divided coordinate-wise

in two sub-processes δ = [δ>1 ,δ>2 ]
> with δ1 : T → Rp−q and δ2 : T → Rq, and let R= [0q×(p−q), R2]

where R2 ∈ Rq×q is a rank-q matrix, so that δ1 is the limit process for the p−q unrestricted coordinates

under HA
0 . Then δ̄>2

�
RΣ0R>

�−1
δ̄2 − δ̃>2

�
RΣ0R>

�−1
δ̃2 ∼ Q̄2

A.

(e) Under HB
0 , LB

n ; Q̄2 with some weight function w. Under the hypothesis HA
0 , LB

n ; Q̄2
B, where

Σ= Σ0.

(f) Let
p

n(β̃ − β0); δ̃. Under HA
0 , W>Σ−1

0 W − δ̃>Σ−1
0 δ̃ ∼ Q̄2

B.

In Theorem 4.1, HA
0 must apply to both type A processes (which is usual, in part b) and type B pro-

cesses (in part e) to obtain a fully-specified null distribution. The type B problem has a composite null

hypothesis, and so only under the restricted subhypothesis HA
0 within the larger type B null parameter

space does the ρ process have an asymptotic Q̄2
B characterization. Using the Q̄2

B distribution for asymp-

totic inference when HA
0 is not true can distort rejection probabilities under the null and lower the power

of uniform inference procedures. Raising the size and power of such tests is the focus of a body of on-

going research represented for example by Linton et al. (2010), Lee et al. (2013), Chernozhukov et al.

(2013), Andrews and Shi (2017), Chernozhukov et al. (forthcoming). Roughly speaking, in this litera-

ture one estimates which constraints bind and conducts inference over this set. This sort of inference is

very different from the asymptotics discussed here and is beyond the scope of this paper.
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Also, the restriction of a set of linear hypotheses and a linear model for conditional quantiles may

be seen as rather restrictive, and could potentially be generalized, although when both the model and

hypotheses are allowed to be nonlinear (for example, B could be some sort of differentiable surface),

great care must be taken to ensure that tests are conducted appropriately — the pitfalls of conducting

inference under nonlinear restrictions using nonlinear models are illustrated succinctly in Wolak (1991)

for the vector (that is, non-process) case.

Parts (c) and (d) of Theorem 4.1 may be useful for simulating the asymptotic distribution of the

process for type A processes. Particularly, the form of the null in part (d) relies on inequality restricted

parameter values that may take less time to find via quadratic programming problem than the full

parameter vector.

The major drawback of the ρ processes above is that they require homoskedasticity and therefore

have limited appeal in the quantile regression context. Wald processes can be defined when the data

are heteroskedastic, allowing for a richer model of the conditional quantiles of the response. A Wald

process is a measure of the distance between the hypothesized β and an estimate under the maintained

hypothesis as a process over τ. Specifically, for each τ ∈ T define

W A
n (τ) = n(β̄(τ)− β̃(τ))>R>

�
RΣ̄n(τ)R

>�−1
R(β̄(τ)− β̃(τ))

W B
n (τ) = n(β̃(τ)− β̂(τ))>R>

�
RΣ̃n(τ)R

>�−1
R(β̃(τ)− β̂(τ)).

The following theorem describes the asymptotic properties of these statistics.

Theorem 4.2. Make assumptions A1-A7. Then

(a) Under HA
0 , W A

n ; Q̄2
A.

(b) Under HB
0 , W B

n ; Q̄2 with some weight function w. Under HA
0 , W B

n ; Q̄2
B.

Note that inference using the Wald process requires no assumption about homoskedasticity as the

ρ-processes do, and the limiting distribution is the same as for those processes (except with the more

general Σ replacing Σ0). Because the limit process is otherwise identical, parts (c), (d) and (f) of

Theorem 4.1 also apply to the asymptotic limit of Wald processes.

Rankscore processes need the same assumptions as those made for Wald inference. For a type

A hypothesis, the restricted model involves an equality constraint and can therefore be estimated via

reparameterization using the standard quantile regression estimator (Gutenbrunner et al., 1993, remark

on p. 312). Let

S̄n(τ) = H̄−1
n (τ)X

>λ̄n(τ)/
p

n

S̃n(τ) = H̃−1
n (τ)X

>λ̄n(τ)/
p

n,

where λ̄n(τ) is the regression rankscore process under the assumption that the constraints bind. Next

define a quadratic form based on normalized differences between less- and more restricted regression
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rankscore processes:

TA
n (τ) =

�
S̄n(τ)− S̃n(τ)

�>
R>
�
RΣ̄n(τ)R

>�−1
R
�
S̄n(τ)− S̃n(τ)

�

T B
n (τ) = S̃>n (τ)R

> �RΣ̃n(τ)R
>�−1

RS̃n(τ).

Rankscore statistics in constrained problems may require two estimates, instead of just one estimate

under the null, because of finite-sample conditions that may cause some constraints to be binding while

others are slack, as was alluded to in the discussion around Lemma 3.2. Under the type A maintained

hypothesis, the score may not necessarily be exactly equal to zero and this leads to the use of S̃n in the

formula for TA
n . Note that T B

n implicitly subtracts the unrestricted Ŝn from S̃n because Ŝn(·)≡ 0p.

Theorem 4.3. Under assumptions A1-A7, TA
n (τ) =W A

n (τ)+oP (1) and T B
n (τ) =W B

n (τ)+oP (1) uniformly

in τ.

Therefore the regression rankscore processes result in the same asymptotic inferences as the Wald

processes under the same assumptions. Under the restriction of homoskedasticity, density-related terms

in H and Σ cancel and it can be seen that the regression rankscore test statistic does not depend on the

response distribution. However, under heteroskedasticity it will still be necessary to estimate H. Finite-

sample behavior of these processes could, of course, be different, as well as finite-sample behavior of

test statistics derived from these processes using supremum or L2 norms, for example.

5 Conclusion

I describe asymptotic distributions for constrained quantile regression objective processes and con-

strained quantile regression coefficient estimate processes. Asymptotics for inference processes similar

to Koenker and Machado (1999) can be derived from the properties of the asymptotic objective surface,

coefficient estimates and the constrained regression rankscore process. For a single quantile level the

test statistics here are related to well-known results in the constrained inference literature. However,

uniform hypotheses for constrained quantile regression coefficients over a set of quantile levels are also

derived. There opportunities to generalize these results, in particular using the recent literature on in-

ference for many moment inequalities, and also these methods could be extended to conduct inference

in more complex models of conditional quantiles.

A Proofs

Proof of Theorem 2.1. Let Ui := Yi−QY |X (τ|X i) = Yi−X>i β0(τ) and for a fixed τ let δ =
p

n(β−β0(τ))

for β ∈ Rp. Using Knight’s identity (Knight, 1998) write the finite part of the objective function process

for (δ,τ) ∈ Rp × T as

∑
i

�
ρτ(Ui − X>i δ/

p
n)−ρτ(Ui)

�
= δ>Z1n(τ) + Z2n(δ,τ)
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where

Z1n(τ) =
−1p

n

∑
i

X i (τ− I(Ui < 0))

and

Z2n(δ,τ) =
∑

i

∫ X>i δ/
p

n

0

p
n (I(Ui ≤ s)− I(Ui ≤ 0))ds. (5)

Next define the “intermediate” lower semicontinuous process

Yn(δ,τ) =




δ>Z1n(τ) +

1
2δ
>H(τ)δ δ ∈ pn(B(τ)− β0(τ))

∞ otherwise.

Consider the difference between Zn and Yn. Lemma A.1 implies that for each δ ∈ pn(B− β0),

sup
τ∈T
|Zn(δ,τ)− Yn(δ,τ)|= sup

τ∈T
|Z2n(δ,τ)−δ>H(τ)δ/2|= oP (1) ,

in other words, Zn(δ,τ)
p→ Yn(δ,τ) uniformly in τ as n→∞ for each δ ∈ pn(B− β). Then Lemma 1

of Kato (2009) shows that supτ∈T supδ∈K |Zn(δ,τ)− Yn(δ,τ)| p→ 0 for all compact K ∈ Rp.

A useful distance estimate is defined in Theorem 4.36 of Rockafellar and Wets (1997), which shows

that a sequence { fn} epi-converges to f if and only if it converges in terms of d̂γ, which is not itself a

metric or pseudometric, and is defined by

d̂γ(epi f , epig) =min{η > 0 : epi f ∩ γBk+1 ⊆ epig +ηBk+1 and epig ∩ γBk+1 ⊆ epi f +ηBk+1}. (6)

Fix a γ≥ 0 and define the compact set Kγ = γBp+2 ∩
p

n(B− β)∩ T . The condition

‖Zn − Yn‖Kγ := sup
δ∈Kγ
|Zn(δ,τ)− Yn(δ,τ)|= η

implies that Zn(δ,τ)≥ Yn(δ,τ)−η for all (δ,τ) ∈ γBp+1 ∩ T so

epiZn ∩ γBp+2 ⊆ epiYn −η ⊆ epiYn +ηBp+2

and similarly

epiYn ∩ γBp+2 ⊆ epiZn −η ⊆ epiZn +ηBp+2.

These two conditions imply that

d̂γ(epiZn, epiYn)≤ ‖Zn − Yn‖Kγ .

Then the uniform convergence of Zn and Yn on compacta implies

0≤ lim
n→∞P

�
d̂γ(epiZn, epiYn)> ε

	≤ lim
n→∞P

¦
‖Zn − Yn‖Kγ > ε

©
= 0.
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Theorem 4.36 of Rockafellar and Wets (1997) then implies that Zn
epi→ Yn in probability.

Now define the sequence of “extended indicator” functions {wn}, where for each n,

wn(δ,τ) =





0 δ ∈ pn(B− β(τ))
+∞ otherwise

and

w(δ,τ) =





0 δ ∈ TB(0,τ)

+∞ otherwise
.

Note that these functions are lower semicontinuous by construction. Chernoff regularity implies that

(Geyer, 1994)
p

n(B(·) − β(·)) → TB(0, ·), in other words that wn
epi→ w. Also define yn(δ,τ) =

−δ>Z1n(τ) + δ>H(τ)δ/2 and z(δ,τ) = −δ>G(τ) + δ>H(τ)δ/2, where the Gaussian process G is

described in the statement of the theorem. The above functions are defined such that Yn = yn+wn and

Z = z +w.

A calculation in Theorem 3 of Kato (2009) (specifically showing equation (14) in the proof) implies

that Z1n ; G in the space of bounded functions on T . Use an almost sure representation (Dudley,

1985, Theorem 4.1) to construct a sequence {Z∗1n} such that Z∗1n → G almost surely, where Z∗1n ∼ Z1n

and G∗ ∼ G, and use this sequence to construct a sequence of functions {y∗n} and a function z∗ that have

analogous properties. Then y∗n
epi→ z∗ almost surely by Theorem 7.46 of Rockafellar and Wets (1997),

which implies Yn ; Z . The fact that dF (Zn, Yn)
p→ 0 and Yn ; Z implies the result.

Lemma A.1. Let Z2n be the function defined in (5) in the proof of Theorem 2.1. Then for each δ ∈p
n(B− β0), under Assumptions A1-A7,

sup
τ∈T

��E [Z2n(δ,τ)]−δ>H(τ)δ/2
�� p→ 0

and

sup
τ∈T
|Z2n(δ,τ)− E [Z2n(δ,τ)]| p→ 0.

Proof of Lemma A.1. The arguments here follow Kato (2009); here X is considered stochastic and there

is no location-scale model imposed on the data. Once again let Ui = Yi −QY |X (τ|X i) = Yi − X>i β0(τ).

Consider the first assertion. Taking expectations conditional on X and using the independence between

observations,

E [Z2n(δ,τ)|X ] = 1
n

∑
i

δ>X iE

�∫ 1

0

p
n
�
I(Ui ≤ (X>i δ/

p
n)× s)− I(Ui ≤ 0)

�
ds
��X i

�

=
1
n

∑
i

δ>X i

�p
n
�
FY |X (QY |X (τ|X i) + (X

>
i δ/
p

n)s|X i)−τ
��

.
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For each term in the sum, the identity τ= FY |X (QY |X (τ|X i)|X i) implies that

p
n
�
FY |X (QY |X (τ|X i) + (X

>
i δ/
p

n)s|X i)−τ
�
= X>i δ

∫ 1

0

fY |X (QY |X (τ|X i) + (X
>
i δ/
p

n)s|X i)ds.

Note that the difference between this and (X>i δ) fY |X (QY |X (τ|X i)|X i) is uniformly negligible for large n

�����X
>
i δ

∫ 1

0

fY |X (QY |X (τ|X i) + (X
>
i δ/
p

n)s|X i)ds− X>i δ fY |X (QY |X (τ|X i)|X i)

�����

≤max
i
|X>i δ|

∫ 1

0

�� fY |X (QY |X (τ|X i) + (X
>
i δ/
p

n)s|X i)− fY |X (QY |X (τ|X i))
��ds,

and assumption A5 implies maxi |X>i δ|= oP

�
n1/2

�
(Angrist et al., 2006, part A.1.2), and

max
i

sup
τ∈T

sup
δ:‖δ‖≤K

∫ 1

0

| fY |X (QY |X (τ|X i) + (X
>
i δ/
p

n)s|X i)− fY |X (QY |X (τ|X i)|X i)|ds = oP (1)

for each K > 0. Therefore for each δ,

1
n

∑
i

δ>X i

�p
n
�
FY |X (QY |X (τ|X i) + (X

>
i δ/
p

n)s|X i)−τ
��

=
1
n

∑
i

δ>X i

�∫ 1

0

fY |X (QY |X (τ|X i)|X i)sds

�
X>i δ+ oP (1) .

Letting n→∞ proves the first assertion.

Now turn to the second assertion. For any δ and each τ ∈ T

E
�
(Z2n(τ,δ)− E [Z2n(τ,δ)])2

�≤ E
�
Z2

2n(τ,δ)
�

=
1
n

∑
i

E



�
δ>X i

∫ 1

0

I(Ui ≤ (X>i δ/
p

n)× s)− I(Ui ≤ 0)ds

�2



≤ 1
n

∑
i

E
�
(X>i δ)

2
�

P
�|Ui| ≤ |X>i δ/

p
n|	

The probabilities in these terms are asymptotically negligible uniformly in τ by the uniform continuity

of fY |X , and the bound on the moments of X implies that the difference above converges in mean square

to zero; convergence in mean square implies convergence in probability. Next, to show that Z2n is

asymptotically equicontinuous in probability, rewrite Ui as Yi −QY |X (τ|X i) to stress its dependence on

τ and define for a bounded triangular array {ξin}

Jn(τ) =
1p
n

n∑
i=1

(X>i δ)
�
I(Yi ≤QY |X (τ|X i) + X>i ξin)− I(Yi ≤QY |X (τ|X i))

�
.
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Then some calculation shows that for any τ1 ≤ τ≤ τ2,

E
�
(Jn(τ)− Jn(τ1))

2 (Jn(τ2)− Jn(τ))
2�

≤ 3E



�

1
n

∑
i

(X>i δ)
2
�
FY |X

�
QY |X (τ2|X ) + X>ξin

�− FY |X
�
QY |X (τ1|X ) + X>ξin

���2

 .

Because maxi ‖X i‖ = oP

�
n1/2

�
and F is absolutely continuous, Theorem 13.5 of Billingsley (1999)

shows that this implies asymptotic equicontinuity in probability of Jn, and uniform (in T ) convergence

to zero, which also applies to its integral, Z2n.

Proof of Theorem 2.2. Theorem 2.1 shows that the sequence of finite-sample objective functions epi-

converges to a limiting objective function. Use the almost sure representation theorem (Dudley, 1985)

to choose Z∗n and Z∗ such that Z∗n ∼ Zn for each n, Z∗ ∼ Z and Z∗n
a.s.→ Z∗. Let δ̃n(τ) = argminδ Z∗n(δ,τ)

(with equality since Z∗ is strictly convex) and δ∗(τ) ∈ argminδ Z∗(δ,τ).

The objective functions are convex and level-bounded in δ locally uniformly in τ (Rockafellar

and Wets, 1997, Definition 1.16) because they are convex and lower semicontinuous and Z∗n(0,τ) =

Z∗(0,τ) = 0. Therefore epi-convergence of Zn to Z and Theorem 1.17 of Rockafellar and Wets (1997)

shows that infδ Zn(δ,τ)
a.s.→ infδ Z(δ,τ) for each τ.

Theorem 7.41 of Rockafellar and Wets (1997) shows that because Z∗n(·,τ) is a convex lower semicon-

tinuous function in δ, the solution δ∗n(τ) is a locally bounded and outer semicontinuous multifunction of

τ. Corollary 7.43 of Rockafellar and Wets (1997) shows that δ∗ is a single-valued, continuous function

of τ because for each τ it is the minimizer of a strictly convex problem on the tangent set. Therefore

for each η > 0,

P
§

sup
τ∈T

dF (limsup
n

δ∗n(τ),δ
∗(τ))> η

ª
= 0

which implies part (a). Part (b) follows from Proposition 3.1 of Geyer (1994) applied to each τ, epi-

continuity in τ of the functions {Z∗n} to Z∗ and the almost-sure representation.

Proof of Lemma 2.3. Recall the definition Z(δ,τ) = −δ>G(τ) + δ>H(τ)δ/2. Part (a) results from

rewriting the objective function: because H is positive definite for all τ, Z can be rewritten as (recall

W (τ) = H−1(τ)G(τ))

Z(δ,τ) =
1
2
δ>H(τ)δ−δ>H(τ)H−1(τ)G(τ)± 1

2
W>(τ)H(τ)W (τ) (7)

=
1
2
(δ−W (τ))>H(τ) (δ−W (τ))− 1

2
W>(τ)H(τ)W (τ). (8)

Furthermore, the second term does not depend on δ, which implies part (b).

Finally, note that by part (b) δ̃(τ) is a projection of W (τ) onto C using the norm ‖h‖H(τ) :=

(h>H(τ)h)1/2. Therefore (in terms of this norm) δ̃(τ) and W (τ) − δ̃(τ) are orthogonal — see, for
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example, Section 2 of Shapiro (1988). Rewrite (8) as the orthogonal decomposition

Z(δ̃(τ),τ) =
1
2

�
‖δ̃(τ)−W (τ)‖2H(τ) − ‖W (τ)‖2H(τ)

�

= −1
2
‖δ̃(τ)‖2H(τ) (9)

which is the statement in part (c).

Proof of Lemma 3.1. For any τ first note that the solution (A.11-A.12 in Appendix) implies

1p
n

n∑
i=1

X iλ̃1ni(τ) =
1p
n

∑
i∈h1

X iλ̃1ni +
1p
n

∑

i∈h̄1

X iψτ(Yi − X>i β̃(τ)).

Add and subtract 1p
n

∑
i∈h1

X iψτ(Yi − X>i β̃(τ)) and note that ψτ(Yi − X>i β̃(τ)) = τ when i ∈ h1 to find

=
1p
n

∑
i∈h1

X i

�
λ̃1ni(τ)−τ

�
+

1p
n

n∑
i=1

X iψτ(Yi − X>i β̃(τ)).

Because of assumption A5 implies that maxi ‖X i‖ = oP

�
n1/2

�
, as detailed in part A.1.2 of Angrist et al.

(2006), −1≤ λ̃1ni −τ≤ 0 and 0≤ card(h1)≤ p,

sup
τ∈T







1p
n

∑
i∈h1

X i

�
λ̃1ni(τ)−τ

�





≤ p max

i
‖X i‖/

p
n= oP (1)

so that

sup
τ∈T







1p
n

n∑
i=1

X iλ̃1ni(τ)−
1p
n

n∑
i=1

X iψτ(Yi − X>i β̃(τ))






= oP (1) . (10)

Proof of Lemma 3.2. Label the difference

∆S
n(τ) :=

1p
n

∑
i

X iψτ(Yi − X>i β̃(τ))−
1p
n

∑
i

X iψτ(Yi − X>i β0(τ)) +H(τ)
p

n
�
β̃(τ)− β0(τ)

�
.

Assumption A1 implies the conditional quantiles of Y given X = X i are QY |X (τ|X i) = X>i β0(τ).

Define

g̃n(β ,τ) =
1
n

n∑
i=1

X iψτ
�
Yi − X>i β

�
, gn(β ,τ) =

1
n

n∑
i=1

X i

�
τ− FY |X (X>i β |X i)

�
,

and Gn(α,τ) =
p

n ( g̃n(β ,τ)− gn(β ,τ)).
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Adding and subtracting
p

ngn(β̃(τ),τ) and
p

ngn(β0(τ),τ), write ∆S
n(τ) = ξ1n(τ) + ξ2n(τ) where

ξ1n(τ) = Gn(β̃(τ),τ)− Gn(β0(τ),τ),

ξ2n(τ) =
p

n
�

gn(β̃(τ),τ)− gn(β0(τ),τ)
	
+H(τ)

p
n
�
β̃(τ)− β0(τ)

�
.

It will be shown that these two terms are uniformly asymptotically negligible.

Appendix A.2 of Kato (2009) (or similarly, the stochastic equicontinuity argument used in section

A.1.2 of Angrist et al. (2006)) can be adapted in a straightforward manner to show that under Assump-

tions A3, A5 and A2,

sup
τ∈T

sup
β∈B(τ):‖β‖<M

|Gn(β ,τ)− Gn(β0(τ),τ)|
p→ 0

for each M > 0, that is, that supτ∈T supβ∈B(τ):‖β‖<M |ξ1n(τ)| = oP (1) for each M > 0. Uniform consis-

tency of β̃ then implies the first term is negligible.

For bounded δ ∈ Rp such that β0(τ) +δ/
p

n ∈ B(τ),

p
n
�
gn(β0(τ) +δ/

p
n,τ)− gn(β0(τ),τ)

�
=
−1p

n

n∑
i=1

X iX
>
i δ/
p

n

∫ 1

0

fY |X
�
QY |X (τ|X i) + s× X>i δ/

p
n|X i

�
ds

and the gradient of gn with respect to β evaluated at β0(τ) is

∇β gn(β ,τ)|β=β0(τ) =
−1
n

n∑
i=1

fY |X (QY |X (τ|X i)|X i)X iX
>
i := −H0

n(τ). (11)

Then for any δ such that β0(τ) +δ/
p

n ∈ B(τ), ‖δ‖< M ,



pn
�
gn(β0(τ) +δ/

p
n,τ)− gn(β0(τ),τ)

�
+H0

n(τ)δ


=






−1p
n

n∑
i=1

X iX
>
i δ/
p

n×
∫ 1

0

fY |X
�
QY |X (τ|X i) + sX>i δ/

p
n|X i

�− fY |X (QY |X (τ|X i)|X i)ds






 .

Then Assumptions A2 and A5 imply for each M > 0,

sup
τ∈T

sup
β∈B(τ):‖β‖<M

��pn (gn(β ,τ)− gn(β0(τ),τ)) +H0
n(τ)
p

n (β − β0(τ))
��= oP

�
n−1/2

�
.

That is, supτ∈T supβ∈B(τ):‖β‖<M |ξ2n(τ)|= oP (1) for each M > 0.

Let ε > 0, and choose an M such that

limsup
n→∞

P
§

sup
τ∈T
‖β(τ)‖> M

ª
< ε.

It is possible to choose such an M because Theorem 2.2 shows that β̃ is uniformly
p

n-consistent over
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T . This all implies that for any γ≥ 0,

limsup
n→∞

P
§

sup
τ∈T
‖∆S

n(τ)‖> γ
ª
≤ lim sup

n→∞
P

�
sup
τ∈T

sup
β∈B(τ):‖β‖<M

‖∆S
n(τ)‖> γ

�
+ P

§
sup
τ∈T
‖β0(τ)‖> M

ª

≤ lim sup
n→∞

2∑
j=1

sup
τ∈T

sup
β∈B(τ):‖β‖<M

��ξ jn(τ)
��+ ε.

Since ε is arbitrary we have that

sup
τ∈T

�����
1p
n

n∑
i=1

X iψτ(Yi − X>i β̃(τ))−
1p
n

n∑
i=1

X iψτ(Yi − X>i β0(τ)) +H0
n(τ)
p

n
�
β̃(τ)− β0(τ)

�
�����= oP (1) .

Because H0
n converges in probability to H uniformly in τ this implies the result.

Proof of Theorem 4.1. The statement in part (a) is Corollary 1 of Koenker and Machado (1999, p. 1298);

its proof is unchanged by restrictions on the parameter vector.

Note that the hypothetical parameter spaces can be rewritten in terms of δ under the null hypothesis

HA
0 . Under HA

0 , the parameter space {β ∈ Rp : Rβ = r} is equivalent to {δ ∈ Rp : Rδ = 0q}. Similarly,

under HA
0 (not HB

0 ), {β ∈ Rp : Rβ ≥ r} is equivalent to {δ ∈ Rp : Rδ ≥ 0q}.
For each τ, LA

n(τ) is a scaled version of the difference process

V̄n(τ)− Ṽn(τ) = Zn(δ̄n(τ),τ)− Zn(δ̃n(τ),τ).

For each τ rewrite this as (Koenker and Bassett, 1982)

Zn(δ̄n(τ),τ)− Zn(δ̃n(τ),τ) = Zn(δ̄n(τ),τ)− Z(δ̄n(τ),τ) + Z(δ̄n(τ),τ)− Z(δ̄(τ),τ)

+ Z(δ̄(τ),τ)− Z(δ̃(τ),τ)

+ Z(δ̃(τ),τ)− Z(δ̃n(τ),τ) + Z(δ̃n(τ),τ)− Zn(δ̃n(τ),τ)

= Z(δ̄(τ),τ)− Z(δ̃(τ),τ) + R(τ) (12)

where by Theorems 2.1 and 2.2, supτ ‖R(τ)‖ = oP (1). Note that convergence here is of bounded

functions and the value functions are almost surely bounded by part (b) of Theorem 2.2, so that this

is equivalent to usual weak convergence in the space of bounded functions. This and the continuous

mapping theorem establish part (b).

To characterize the limiting distributions in part (b) note that under assumption B1 with the known

scale of the error distribution normalized to 1, the variance of W (τ) is the simpler Σ0(τ). Assume

HA
0 and rewrite (12) using Lemma 2.3, part (a), and scale it to find an asymptotic expression for the

marginal distributions:

LA
n(τ); min

δ:Rδ=0
(δ−W (τ))>Σ−1

0 (τ)(δ−W (τ))− min
δ:Rδ≥0

(δ−W (τ))>Σ−1
0 (τ)(δ−W (τ)). (13)
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Corollary 3.7.2 of Silvapulle and Sen (2005) states that the marginal distributions follow χ̄2 distributions

with the given weights for each τ, that is, that the process tends to a Q̄2
A process.

To show part (c), rewrite (13) using the minimizers to each problem as

LA
n(τ);

�
δ̄(τ)−W (τ)

�>
Σ−1

0 (τ)
�
δ̄(τ)−W (τ)

�− �δ̃(τ)−W (τ)
�>
Σ−1

0 (τ)
�
δ̃(τ)−W (τ)

�
.

Adding and subtracting W>(τ)Σ−1
0 W (τ), note that because each asymptotic solution is a projection

onto the subspaces C or M defined in the statement of the theorem, a Pythagorean theorem in the

norm ‖v‖Σ−1
0 (τ)

= (v>Σ−1
0 v)1/2 holds for each term, for example, ‖W (τ)‖2

Σ−1
0 (τ)

= ‖δ̄(τ)−W (τ)‖2
Σ−1

0 (τ)
+

‖δ̄(τ)‖2
Σ−1

0 (τ)
. Substituting in the appropriate terms and rearranging results in part (c).

To prove part (d), it is convenient to define

q(δ,τ) = (δ−W (τ))>Σ−1
0 (τ) (δ−W (τ))

q2(δ2,τ) = (δ2 −W2(τ))
> �RΣ0(τ)R

>�−1
(δ2 −W2(τ))

where R takes the special form specified in this part. These are nearly the same as (A.3) and (A.4) in

the appendix except that they use Σ−1
0 in the place of H — under the assumption of homoskedasticity,

these two matrices are scalar multiples of one another. Add and subtract a term to write the right-hand

side of (13) as

min
δ:Rδ=0

q(δ,τ)−W>(τ)Σ−1
0 (τ)W (τ)− min

δ:Rδ≥0
q(δ,τ) +W>(τ)Σ−1

0 (τ)W (τ).

The assumption about the decomposition of R made in this part is equivalent to condition S in the Ap-

pendix, so Theorem 1.1 of the appendix can be applied. Using part (a) of Theorem 1.1 in the appendix,

with Σ−1
0 replacing H, this is equal to

min
δ:Rδ=0

q2(δ,τ)−W>
2 (τ)

�
RΣ0(τ)R

>�−1
W2(τ)− G>1 (τ)

�
(I − R)Σ0(τ)(I − R)>

�
G1(τ)

− min
δ:Rδ≥0

q2(δ,τ) +W>
2 (τ)

�
RΣ0(τ)R

>�−1
W2(τ) + G>1 (τ) ((I − R)Σ0(τ)(I − R))G1(τ).

Cancel the parts that involve G1 and, using the definition of q2 and a Pythagorean theorem in ‖ · ‖Σ−1
0 (τ)

to rewrite this as the expression in part (d).

Turning to part (e), the analysis of type B processes is nearly identical to that of type A processes.

Making the same series of manipulations one finds that the process converges to some stochastic process,

which depends on the true parameter value so remains unknown because the parameter is generally

restricted to a cone with nonempty interior. Under the hypothesis HA
0 , Corollary 3.8.3 of Silvapulle

and Sen (2005) asserts that the asymptotic marginal distributions are χ̄2 distributions with the weights

stated in the description of the Q̄2
B process.

Part (f) is shown in the same way as part (c) except that δ̂(·) =W (·).

Proof of Theorem 4.2. The continuous mapping theorem and Theorem 2.2 imply part (a). Suppose that
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HA
0 is true and consider the form of this τth marginal difference in asymptotic quadratic minimization

problems:

∆(τ) = min
δ:Rδ=0

(δ−W (τ))>Σ−1(τ)(δ−W (τ))− min
δ:Rδ≥0

(δ−W (τ))>Σ−1(τ)(δ−W (τ)). (14)

Because M is a linear subspace of C, applying equation (3.7) of Shapiro (1988) shows that this follows

a χ̄2 distribution with weights given in the definition of the Q̄2
A process. Now it remains to show that

this random variable has the same distribution as the marginal asymptotic distribution of the type A

Wald process.

Divide the parameter space into directions parallel to the constraints and orthogonal to them in the

norm ‖v‖Σ−1(τ) = (v>Σ−1(τ)v)1/2: following Amemiya (1985, Section 1.4.2), define another matrix

S ∈ Rs×p such that M = [S>, R>]> is nonsingular and SΣ(τ)R> = 0s×q. Then the quadratic forms

in (14) can be rewritten. For example,

(δ−W (τ))>Σ−1(τ)(δ−W (τ)) = (δ−W (τ))>M>
�
M>

�−1
Σ−1(τ)M−1M(δ−W (τ))

= (δ−W (τ))>M>
�
MΣ(τ)M>

�−1
M(δ−W (τ))

= (δ−W (τ))>M>
�
(SΣ(τ)S>)−1 0s×q

0q×s (RΣ(τ)R>)−1

�
M(δ−W (τ))

= (δ−W (τ))>S>
�
SΣ(τ)S>

�−1
S(δ−W (τ))

+ (δ−W (τ))>R>
�
RΣ(τ)R>

�−1
R(δ−W (τ)).

When minimizing subject to the constraints Rδ ≥ 0, it is always possible to set the first term equal to

zero because it is orthogonal to the constraints. This means that the only (possibly) nonzero element is

the final term involving R, for example, that

min
δ:Rδ≥0

(δ−W (τ))>Σ−1(τ)(δ−W (τ)) = min
δ:Rδ≥0

(δ−W (τ))>R>(RΣ(τ)R>)−1R(δ−W (τ)).

Applying these calculations to both halves of the right-hand side of (14), we have that

∆(τ) =
�
δ̄(τ)− δ̃(τ)�> R>(RΣ(τ)R>)−1R

�
δ̄(τ)− δ̃(τ)�∼ χ̄2,

with the weights given in the definition of the Q̄2
A process. To find the marginal distributions of the

asymptotic type B process asserted in part (b), the same algebraic manipulations as above can be applied,

and combined with (3.1)-(3.6) of Shapiro (1988). Under HB
0 this follows some form of Q̄2 distribution,

but under HA
0 this difference has the distribution of the Q̄2

B process.

Proof of Theorem 4.3. Working with the type A process, manipulate TA
n (τ) as follows: using Lemma 3.1
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and Lemma 3.2, write the difference

S̄n(τ)− S̃n(τ) = −H−1
n (τ)H(τ)

p
n(β̄(τ)− β0(τ)) +H−1

n (τ)H(τ)
p

n(β̃(τ)− β0(τ))

=
p

n
�
β̃(τ)− β̄(τ)�+ oP (1) ,

uniformly in τ, using the fact that Hn(·) is a uniformly consistent estimate of H(·) and nonsingular.

Substitute this into TA
n (τ), and the continuous mapping theorem implies the result. The type B process

uses the same steps and the fact that Ŝn(·)≡ 0p.
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Appendix to “Asymptotic Inference for the Constrained Quantile

Regression Process”

December 20, 2018

The first section describes asymptotic behavior of quantile regression coefficient estimates when

only a subset of coefficients is constrained and the rest are unconstrained coefficients. Next there is a

short discussion about obtaining dual solutions from the primal quantile regression coefficient estimate

since at present no specialized software exists to construct such solutions automatically. Third, a section

relates the rankscore statistic of Koenker and Machado (1999) to the rankscore statistics used in this

article, which look rather different but are equivalent under the right conditions. Finally there is a

section that offers two small simulation experiment examples for testing in a one-sample situation and

in a simple regression model.

1 Subvector distributions

It may be of interest to know the distribution of parameter estimates when one subset of coefficient

processes is constrained and the other is unconstrained. Assume that the covariates can be split into

two groups that correspond to parameters that lie on respectively the boundary or the interior of the

parameter set (as specified below). A more complex setting is analyzed in Andrews (2001).

Suppose that the coefficient vector β can be logically divided into two groups as β1 ∈ Rs, β2 ∈ Rq

such that s + q = p. β1 represents unrestricted parameters and β2 represents the vector of coefficients

restricted by the null hypothesis to the boundary of the parameter set. Split the main components of

the limit process into conformable pieces as

δ(·) =
�
δ1(·)
δ2(·)

�
H(·) =

�
H11(·) H12(·)
H21(·) H22(·)

�
(A.1)

G(·) =
�

G1(·)
G2(·)

�
W (·) =

�
W1(·)
W2(·)

�
. (A.2)

Also define Ξ= [0q×s, Iq], q× p matrix that selects the β2 coordinates from β(τ) and other conformably

split vectors and matrices.

Assumption S implicitly defines which coefficients are restricted and which are not by specifying the

form of the (marginal) tangent set.
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S The asymptotic parameter space C can be subdivided as C = C1 × C2, where C1 = Rs and C2 ⊂ Rq

is a convex cone.

Finally, define two asymptotic quadratic objective functions like the one shown in part (b) of Lemma 2.3:

q(δ,τ) = (δ−W (τ))>H(τ) (δ−W (τ)) , (A.3)

q2(δ2,τ) = (δ2 −W2(τ))
> �ΞH−1(τ)Ξ>

�−1
(δ2 −W2(τ)) . (A.4)

The following theorem summarizes several properties of subvectors of δ̃(τ). In particular, an an-

alytic solution is can be found for parameters that lie in the interior of the parameter space, although

they depend on the value of the parameters on the boundary.

Theorem 1.1. Fix a value of τ ∈ T . Divide the solution vector δ̃(τ) into two subvectors δ̃1(τ) and δ̃2(τ)

corresponding to the definition in (A.1). Under assumptions A3, A4, A6, A7 and S,

(a) W>(τ)H(τ)W (τ) = G>1 (τ)H
−1
11 (τ)G1(τ) +W>

2 (τ)
�
ΞH−1(τ)Ξ>

�−1
W2(τ).

(b) minδ∈C q(δ,τ) =minδ2∈C2
q2(δ2,τ)

(c) δ̃2(τ) = argminδ2∈C2
q2(δ2,τ)

(d) δ̃1(τ) = H−1
11 (τ)W1(τ)−H−1

11 (τ)H12(τ)δ̃2(τ)

Proof of Theorem 1.1. This proof follows the method developed in the proof of Theorem 4 of Andrews

(1999) to divide the asymptotic quadratic form into parts that depend only on β1 or β2. First define

A(τ) :=

�
−H−1

11 (τ)H12(τ)

Iq

�
∈ Rp×q.

Then define P⊥(τ) := A(τ)Ξ and P(τ) := Ip − P⊥(τ), that is,

P⊥(τ) =

�
0s×s −H−1

11 (τ)H12(τ)

0q×s Iq

�
, P(τ) =

�
Is H−1

11 (τ)H12(τ)

0q×s 0q×q

�
.

Then in terms of the norm ‖·‖H(τ) defined for x ∈ Rp by ‖x‖H(τ) = (x>H(τ)x)1/2, P(τ) projects vectors

in Rp onto the subspace L =
¦

x ∈ Rp : x = [u>,0>q ]
> for u ∈ Rs

©
and P⊥(τ) projects vectors onto its

orthogonal complement. That is, for any x , y ∈ Rp, (P⊥(τ)x)>H(τ)(P(τ)y) = 0.

The following quadratic form in W can be split into parts corresponding to β1 and β2 using the

orthogonal projections P⊥(τ) and P(τ):

W>(τ)H(τ)W (τ) =
�
P⊥(τ)W (τ)

�>
H(τ)

�
P⊥(τ)W (τ)

�
+ (P(τ)W (τ))>H(τ) (P(τ)W (τ)) . (A.5)

Note that

A>H(τ)A=
�
ΞH−1(τ)Ξ

�−1
(A.6)
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can be verified by algebra, and also that

P(τ)H−1(τ) =

�
H−1

11 (τ) 0s×q

0q×s 0q×q

�
.

The (2, 2) block of the above matrix is the result of direct calculation after writing H−1(τ) as a partitioned

inverse. These equivalencies imply that

P(τ)W (τ) =

�
H−1

11 (τ)G1(τ)

0q

�
. (A.7)

Use (A.6) and (A.7) to rewrite (A.5) as

W>(τ)H(τ)W (τ) = G>1 (τ)H
−1
11 (τ)G1(τ) +W>

2 (τ)
�
ΞH−1(τ)Ξ>

�−1
W2(τ),

which is the decomposition in part (a).

Now define another quadratic objective function,

q1(δ1,δ2,τ) =
�
δ1 +H−1

11 (τ)H12(τ)δ2 −H−1
11 (τ)G1(τ)

�>
H11(τ)×�
δ1 +H−1

11 (τ)H12(τ)δ2 −H−1
11 (τ)G1(τ)

�
.

Using the fact that

Pδ(τ) =

�
δ1(τ) +H−1

11 (τ)H12(τ)δ2(τ)

0q

�
,

make the orthogonal decomposition

q(δ,τ) =
�
P⊥(τ)δ− P⊥(τ)W (τ)

�>
H(τ)

�
P⊥(τ)δ− P⊥(τ)W (τ)

�
+

(P(τ)δ− P(τ)W (τ))>H(τ) (P(τ)δ− P(τ)W (τ))

and (A.7) to rewrite q(δ,τ) = q1(δ1,δ2,τ) + q2(δ2,τ). For any given value of the subvector δ2, q1 is

a quadratic form that is minimized over C1 = Rs, which implies that minδ1∈C1
q1(δ1,δ2,τ) = 0. This

implies part (b).

To show part (c), note that

0≤ q2(δ̃2(τ),τ)− min
δ2∈C2

q2(δ2,τ)

≤ q1(δ̃1(τ), δ̃2(τ),τ) + q2(δ̃2(τ),τ)− min
δ2∈C2

q2(δ2,τ)

= q(δ̃(τ),τ)−min
δ∈C

q(δ,τ) = 0,

where the equality follows from part (b), the decomposition of the quadratic objective function and the

definition of δ̃(τ). This implies part (c).
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Finally, since q(δ̃(τ),τ) =minδ∈C q(δ,τ) =minδ2∈C2
q2(δ2,τ) and q(δ̃(τ),τ) = q1(δ̃1(τ), δ̃2(τ),τ)+

q2(δ̃2(τ),τ), we know that q1(δ̃1(τ), δ̃2(τ),τ) =minδ1∈C1
q1(δ1, δ̃2(τ),τ) = 0, which implies the solu-

tion in part (d).

2 Recovering inequality constrained dual solutions

Putting (3) in canonical form (Boyd and Vandenberghe, 2004, p. 147) makes it easier to transition to

the corresponding dual problem. The canonical primal problem is defined as

min
x

�
c>x : Ax − b ∈ T, x ∈ S

	
,

which has dual problem

max
y

�
b> y : c − A> y ∈ S∗, y ∈ T ∗

	
.

where S∗ and T ∗ are dual spaces associated with S and T (Koenker and Ng, 2005, p. 420).

To rewrite the primal problem in canonical form, let

x =




u

v

b


 , c =




τ1n

(1−τ)1n

0p


 , A=

�
In −In X

0q×n 0q×n R

�
, b =

�
Y

r

�

and T = 0n ×Rq
+ and S = R2n

+ ×Rp. Then the minimization problem can be written

min
u,v,b




�
τ1>n (1−τ)1>n 0>p

�



u

v

b


 :

�
In −In X

0q×n 0q×n R

�


u

v

b


−

�
Y

r

�
∈ 0n ×Rq

+,




u

v

b


 ∈ R2n

+ ×Rp





.

This has the dual problem

max
λ




�
Y> r>

��λ1

λ2

�
:




τ1n

(1−τ)1n

0p


−




In 0n×q

−In 0n×q

X> R>



�
λ1

λ2

�
∈ R2n

+ × 0p,λ ∈ Rn × Rq
+





. (A.8)

Let λ̃ = [λ̃>1 , λ̃>2 ]
> denote the solution to the dual problem (A.8). Using the definitions of Ỹ and X̃

made in the main text, the dual program (A.8) can be collapsed into the more compact expression

max
λ

�
Ỹ>λ : X̃>λ= 0p+q,λ ∈ [τ− 1,τ]n ×Rq

+

	
. (A.9)

Strict duality ensures that once the optimum has been found, the dual value function is identical to the

primal value function (Boyd and Vandenberghe, 2004, p. 226-227), that is,

Ỹ>λ̃= τ1>n ũ+ (1−τ)1>n ṽ (A.10)

4



where ũ and ṽ are vectors of positive and negative residuals from the constrained quantile regression

fit, respectively.

The individual dual variables can be recovered from the primal solution and the definitions of h1

and h2. To satisfy equation (A.10), first solve for all the coordinates in h̄ by setting

λ̃(h̄) = {λ̃i}i∈h̄ =





τ i ∈ h̄1, ũi > 0

τ− 1 i ∈ h̄1, ṽi > 0

0 i ∈ h̄2.

(A.11)

After this mapping process there remain the p non-assigned elements in h. Solve for these final terms

by using the other condition

X̃>λ̃= 0p⇔ X̃>(h̄)λ̃(h̄) + X̃>(h)λ̃(h) = 0p

⇔ λ̃(h) = −(X̃>(h))−1X̃>(h̄)λ̃(h̄). (A.12)

Finally, a note on implementation: the R package quantreg (Koenker, 2017) can be used to solve for

the primal solution, that is, the constrained quantile regression coefficients. By default the constrained

estimator uses an interior point method to find solutions. This is not guaranteed to end exactly on a

basic solution, and has a tendency to find solutions that lie between observations/constraints. An ad-hoc

procedure for finding the basic solution is to choose the indices of the smallest p quantile residuals; more

careful programs, however, have capabilities to identify basic solutions after running an interior point

algorithm. See section 10.3.2.4 (“Basis Identification”) of the Rmosek manual (MOSEK ApS, 2018).

3 Relationship between constrained rankscore statistic and Koenker and

Machado (1999)

At a casual glance it may be difficult to recognize that the rankscore process proposed in the main text

is related to the rankscore process defined in Koenker and Machado (1999). They were concerned with

the hypothesis that the last q quantile regression coefficients are equal to zero against an unrestricted

alternative. To rewrite their statistic, first define partitions of the H̄n matrix

H̄n jk(τ) =
1

nhn

n∑
i=1

K((Yi − X>i β̄(τ))/hn)X jiX
>
ki , j, k ∈ {1, 2}.
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Then Koenker & Machado define (these terms are rewritten a little differently from the original to

accommodate more general forms of heteroskedasticity than were considered in that paper)

X̂2 = X1H̄−1
n11(τ)H̄n12(τ)

MKM = τ(1−τ)(X2 − X̂2)
>(X2 − X̂2)/n (A.13)

S̄KM (τ) =
1p
n

n∑
i=1

(X2i − X̂2i)λ̄1ni(τ)

TKM (τ) = S̄>KM (τ)M
−1
KM S̄KM (τ). (A.14)

To show that TKM is comparable to the regression rankscore statistics considered here, set the matrix R to

the selector matrixΞ= [0q×s, Iq] used earlier (where s+q = p), which corresponds to the hypothesis H0 :

β2 = 0, and recall that in general any linear restriction Rβ = r in a linear model can be reparameterized

to an equivalent test of a zero restriction (Davidson and MacKinnon, 1993, Section 1.3). The TKM

statistic implicitly uses the unrestricted alternative hypothesis because the score based on unrestricted

estimation is identically zero. In other words, the score processes discussed in Koenker and Machado

(1999) are equivalent to those here except for the form of the null and alternative hypotheses. In

Lemma 3.1 the right-hand side of the equality is written as the rankscore statistics referred to in the

main text.

Lemma 3.1. Suppose β is estimated under the hypothesis H0 : Ξβ(τ) = 0q. Consider the regression

rankscore test statistic TKM defined in (A.14) for testing this restriction against an unrestricted alternative.

Then

TKM (τ) = S̄n(τ)
>Ξ>

�
ΞΣ̄n(τ)Ξ

>�−1
ΞS̄n(τ). (A.15)

Proof of Lemma 3.1. Partition H̄n(τ) into four conformable matrices — the upper left an s × s matrix

H̄n11 and lower right a q× q matrix H̄n22 for example. In this proof, the partitions of H̄n are referred to

without bars to reduce notational clutter. Define

An(τ) =

�
−H−1

n11(τ)Hn12(τ)

Iq

�
∈ Rp×q.

An(τ) can be used to rewrite the X̂2 terms used in Koenker and Machado (1999). In particular, X̂2 =

X1H−1
n11(τ)Hn12(τ) so that it can be verified that

X2 − X̂2 = XAn(τ).

This also implies MKM = τ(1−τ)A>n (τ)DnAn(τ) where MKM was defined in (A.13). Finally TKM can be

rewritten

TKM (τ) = λ̄
>
n (τ)XAn(τ)

�
τ(1−τ)A>n (τ)DnAn(τ)

�−1
A>n (τ)X

>λ̄n(τ).

Now consider the formula on the right-hand side of (A.15): using a partitioned matrix formula it

6



can be verified that

ΞH−1
n (τ)X

> =
�
Hn22(τ)−Hn21(τ)H

−1
n11(τ)Hn12(τ)

�−1 �
X>2 −Hn21(τ)H

−1
n11(τ)X

>
1

�

= H22
n (τ)A

>
n (τ)X

>,

using H22
n to denote the (2,2) block of H−1

n . Plugging this into the right-hand side of expression (A.15),

the result holds if

�
A>n (τ)DnAn(τ)

�−1
= H22

n (τ)
�
ΞH−1

n (τ)DnH−1
n (τ)Ξ

>�−1
H22

n (τ)

⇔ A>n (τ)DnAn(τ) =
�
H22

n (τ)
�−1 �

ΞH−1
n (τ)DnH−1

n (τ)Ξ
>� �H22

n (τ)
�−1

⇔ H22
n (τ)A

>
n (τ)DnAn(τ)H

22
n (τ) = ΞH−1

n (τ)DnH−1
n (τ)Ξ

>.

This last equivalency is true because, for example H22
n (τ)An(τ)> = ΞH−1

n (τ), which can be verified

using a partitioned matrix formula.

4 Examples

Example 1. Here is a simple illustration of the test statistics discussed in the main text. Suppose that

X = 1, so that the quantile regression estimator is QY (τ) = α(τ), and we would like to test whether the

(unconditional) distribution of Y dominates the standard normal distribution at first order. In terms of

quantile functions that is the condition that α(τ)≥ Φ−1(τ), where Φ−1 is the standard normal quantile

function. Typically in the econometrics literature a null of dominance is used, and the alternative is that

a point τ ∈ T exists where the distribution of Y does not dominate (Linton et al., 2010). Constrained

quantile regression estimates make it straightforward to design a test for these hypotheses. Consider

tests of

H0 : QY (τ)≥ Φ−1(τ) for all τ ∈ T
H1 : there is some τ0 ∈ T such that QY (τ0)< Φ

−1(τ0).

The two hypotheses make this a type B problem. The model is estimated two ways; it is estimated

once without constraints and once subject to the null constraint that α(τ) ≥ Φ−1(τ). Evidence of a

significantly positive effect at some quantile level would be indicated by a large value of one of the test

statistics.

The problem is marginally one-dimensional, so constrained estimates are simply α̃(·) = α̂(·)∨Φ−1(·),
where α̂ is the unconstrained quantile estimate. Then δ̃n(·) =

p
n(α̃(·)−Φ−1(·)) and its limit belong to

the marginally polyhedral tangent set TB(β0) = R+ × T .

Using Theorem 2.1, δ̃ is marginally characterized by the simple problem δ̃(τ) = argminδ∈R+ −δB(τ)+

δ2φ(Φ−1(τ))/2, where φ is the standard normal density and B is a standard Brownian bridge. That is,

δ̃(·) = φ−1(Φ−1(·))(B(·)∨ 0). Lemma 4.1 part (f) shows that, under the least favorable null, for each τ

the likelihood ratio process is marginally distributed as L B(τ) ∼ (B(τ)∧ 0)2/(τ(1−τ)), which can be
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easily simulated.

The two most popular functionals for measuring the distance between inference processes such as

these are the supremum- and L2 norm metrics: for any function f : T → R, let the sup-norm statistic

derived used here is ‖ f ‖∞ := supτ∈T f (τ), and ‖ f ‖2 :=
∫
T ( f (τ)∨0)2dτ. To make a statistical decision

and to inspect the performance of the asymptotic theory, p-values are convenient. Given an observed in-

ference process and derived statistic T̃ using one of the norms described above, simulate the asymptotic

limit process nsim times, obtain T ∗k = ‖L B
k ‖ for k = 1, . . . nsim and calculate p∗ = n−1

sim

∑ns im
i=1 I(T ∗k > T̃ ).

Under the null hypothesis, p∗ should be uniformly distributed.

To produce the p-value plots in Figures 1 and 2, samples of size 100, 400 and 1000 were generated

from a standard normal distribution and regressed on an intercept, either without constraint (so they

are the sample quantiles) or under the dominance constraint. The inference processes are discretized —

quantile regression coefficients are evaluated for τ ∈ {0.05, 0.06, . . . , 0.95} and the norms are applied

over this grid. The asymptotic process is also simulated on the same discretized grid. 1000 processes

were estimated for each sample size and 1000 simulated processes were used to construct a reference

distribution.

Figure 1 shows p-value plots derived from sup-norm statistics. In left-side panels, CDFs of p-values

derived from an inference process are plotted against the theoretical uniform target CDF. On the right,

the difference between empirical and theoretical CDFs are plotted. Figure 1 reveals a close correspon-

dence between the p-values generated, even when the sample size is fairly small. A slight improvement

can be seen when increasing the sample size.

The picture is similar for the L2 statistics. Figure 2 shows p-value plots for these statistics. The same

sample sizes and statistics are shown as in Figure 1, except that a different functional is used to evaluate

the evidence against the null contained in the inference processes. Figure 2 looks very similar to the

supremum norm results.

Example 2. Suppose that the random variable D denotes a treatment that is assigned randomly, and

we can be confident that the treatment does not negatively affect agents. Then a plausible model might

be

QY |X ,D(τ|X , D) = X>β1(τ) + β2(τ)D, (A.16)

estimated subject to the maintained hypothesis that β ∈ Rp−1 × R+ for all τ (it is assumed that X

contains an intercept). Suppose we wish to test

H0 : β2(τ) = 0 for all τ ∈ T
H1 : β2(τ0)> 0 for some τ0 ∈ T .

Then a test can be conducted that uses equality constrained and inequality constrained estimates. The

use of these particular estimates makes this a type A problem. Once again, evidence of a significantly

positive effect at some quantile level would be indicated by a large value of one of the test statistics.

For this problem R = [0>p−1, 1] and r = 0. It is not assumed that the data are identically distributed, so

only Wald and regression rankscore processes are considered here.
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Figure 1: p-value plots for sup-norm statistics derived from the type-B inference processes described
in the text for the one-sample data generating process described in the first example. The left panels
show the CDFs of the p-values against the uniform CDF. The right panels show differences between the
empirical p-value CDFs and the uniform CDF (vertical scale from -5% to +5% so all plots have the same
scale). 1000 processes were estimated, and 1000 limit processes were simulated to serve as a reference
distribution and calculate simulation based p-values.
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Figure 2: p-value plots for L2 norm statistics in the one-sample example. The simulation details are the
same as for the sup-norm statistics with the one-sample data generating process.

10



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

p−value CDFs, W_n

Uniform p−value

E
m

pi
ric

al
 p

−
va

lu
es

n = 100
n = 400
n = 1000

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

p−value CDFs, T_n

Uniform p−value

E
m

pi
ric

al
 p

−
va

lu
es

n = 100
n = 400
n = 1000

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

04
0.

02

Difference from unif, W_n

Uniform p−value

E
m

p.
 m

in
us

 th
eo

.

n = 100
n = 400
n = 1000

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

04
0.

02

Difference from unif, T_n

Uniform p−value

E
m

p.
 m

in
us

 th
eo

.

n = 100
n = 400
n = 1000

Figure 3: p-value plots for sup-norm statistics derived from the type A inference processes for detecting
a positive treatment effect in the regression data generating process example. The left panels show the
CDFs of the p-values against the uniform CDF. The right panels show differences between the empirical p-
value CDFs and the uniform CDF (vertical scale from -5% to+5% so all plots have the same scale). 1000
processes were estimated, and 1000 limit processes were simulated to serve as a reference distribution
and calculate simulation based p-values.

The suggested matrix Σn discussed above is used, using the default settings available in the R pack-

age quantreg (Koenker, 2017) — that is, from the standard error option ’ker’, involving a Gaussian

kernel with a robust estimate of the scale of the distribution. The limit process must be simulated using

the estimate Σn since the weights in the Q̄2 process generally depend on Σ, and so the process does not

have a pivotal distribution. For each process in the example below, a p-value is simulated using Σn and

1000 simulated Gaussian processes.

In the simulations for this example p was set to 4 and all regressors were generated as independent

standard normal random variables. For each of 1000 simulation runs, Σ was estimated and a p-value

was generated from 1000 simulated asymptotic statistics (either sup-norm or L2-norm) that depend on

Σn. To simulate the asymptotic process, let q(δ,τ) = (δ −W (τ))>Σ−1(τ)(δ −W (τ)) and note that

asymptotically, both the Wald and score processes have the same marginal distributions as the differ-

ence minδ:δ2=0 q(δ,τ)−minδ:δ2≥0 q(δ,τ), where q was defined in (A.3). Reduce this to the difference

(W2(τ)∧ 0)2/Σ22(τ), which can be simulated given an estimate of Σ22.

Figure 3 reveals that both processes produce very similar results, and Figure 4 reveals that the L2

statistic behaves much as the supremum norm statistic. These statistics are most likely so similar because

of the relatively simple data generating process used for simulations, and may produce different results

under heteroskedastic designs, for example.
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Figure 4: p-value plots for L2 norm statistics in the regression example. The simulation details are the
same as for the sup-norm statistics with the regression data generating process.
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