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Abstract

We calculate semiparametric efficiency bounds for a partially linear single-index model

using a simple method developed by [1]. We show that this model can be used to evaluate

the efficiency of several existing estimators.
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1. Introduction

A straightforward and convenient method for the calculation of semiparametric effi-

ciency bounds was proposed in [1] and illustrated using several example models. In this

paper, we extend their method to investigate semiparametric efficiency for the finite-

dimensional parameters of the model

y = g0(X ′θ0) + Z ′β0 + ε, (1.1)

where θ0 and β0 are unknown, g0(·) is an unknown function and ε has a distribution

conditional on covariates X and Z. This model encompasses several interesting special

cases — the linear-, partially linear-, single-index- and partially linear single-index mod-

els — and the method used here makes it simple to account for various identification

conditions. Our method is that illustrated by [1] (explained in greater detail in the re-

cent survey [2]), and we extend their results to to semiparametric models of conditional

quantiles, which were not considered by those authors.
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A number of estimators of model (1.1) and related models have been proposed. Semi-

parametric efficient locally-linear quasi-likelihood estimation of this model was proposed

in [3]; they also showed that their estimator reached the bound (and also verified that

the estimator in [4] attained this bound). Sieve estimators of θ0 in the single-index

model have been proposed by [5] and [6]. Computationally attractive estimators were

proposed in [7] and in [8] for the single-index model under conditional quantile iden-

tification conditions. [9] and [10] proposed estimators of model (1.1) for a conditional

mean identification condition. In addition, [11] have proposed an estimator for a closely-

related group of models of conditional quantiles. It is of interest to know whether these

estimators attain the relevant efficiency bounds.

In this article we use a method due to [1] to derive the semiparametric efficiency

bound for this model in a straightforward manner, independent of assumptions regarding

identification or type of estimator. Model (1.1) is not addressed in [1], and we extend

their method to this model without making any more restrictions on the conditional

distribution of ε given W . We then use our bound to compare to results for conditiona

mean- and quantile location identification conditions. This method makes it easy to

derive the general bound (i.e., for the “least-favorable parametric submodel”) in a clear

manner without going through the usual two-step style calculation, as represented for

example by [12] and [13], and we view it as a complement to that model, which appears

to be more well-suited to calculations for special cases (like efficiency bounds for the class

of M -estimators, for example).

2. General assumptions

We assume the random variables y ∈ R, W = [X′ Z′ ]′ ∈ Rp, and ε ∈ R have densities

q20(y|W ), b20(W ) and γ20(ε|W ) respectively. The likelihood associated with an observation

(y,W ) is

L (θ; y,W ) = q20(y|W )b20(W )

which could alternatively be expressed using the conditional density of the additive er-

ror term ε, because the model (1.1) implies q0 and γ0 satisfy the equation q0(y|W ) =

γ0(y − g0(X ′θ0) + Z ′β0|W ). Assume g0 ∈ L2(R, λ) and has a derivative g′0 ∈ L2(R, λ),

where the notation L2(A, µ) denotes the space of square-integrable functions on some
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domain A with respect to some measure µ, and λ is Lebesgue measure. Because g0 is un-

known, we make the definitions X0 = X ′θ0 (where X ′ denotes “X transpose” below) and

W0 = [X0 Z
′ ]′ ∈ Rp0 , and impose the “index restriction” q0(y|W ) = q0(y|W0) (equiva-

lently, γ0(ε|W ) = γ0(ε|W0)). This differs slightly from previous partial-index models in

the literature (e.g., [12]) that assumed the variance function was a fully nonparametric

function of W . As is pointed out by [14], when considering estimation, such models may

suffer from the curse of dimensionality. Our results are relevant for models with variance

functions that generally depend only on W0. This restriction has some precedence in the

literature; for example, [4] restrict their attention to similar cases. Finally, we note that

we implicitly assume the model is identified. In practice, this would mean for example,

assuming the first element of θ0 is normalized to 1 and the first element of X is con-

tinuously distributed, as well as using trimming in an estimator to ensure the positivity

of the density of X ′θ0; however, we abstract away from these details to focus on the

technique used to derive the efficiency bound.

We make minimal assumptions regarding b20, the marginal density of W : we assume

that b0 is a member of the space B, where

B =

{
b ∈ L2(Rp, λ) : b2(w) > 0,

∫
Rp

b2(w)dw = 1

}
,

and the additional identification assumption that E [(W − E [W |X0])(W − E [W |X0])′]

exists and is nonsingular (one could assume only a generalized inverse, as in [10] for a

model similar to (1.1)). Assume that γ0 ∈ Γ, where

Γ =

{
γ : R× Rp → R : γ(u|W ) = γ(u|X ′θ0, Z), γ2(u|W ) > 0,

∫
R
γ2(u|W )du = 1,

γ(u|W ) is bounded and continuous, and

∫
R

(γ′(u|W ))
2

du <∞, all w.p.1

}
where γ′ refers to a partial derivative with respect to u — that is, γ′(u|w) = ∂γ(u|w)/∂u.

Further conditions that γ0 must satisfy will be specified below, depending on the identi-

fication condition imposed on ε. Because of the aforementioned equation of q0 with γ0,

the space of functions Q 3 q is essentially the same as Γ described here, and we simply

rely on Γ as the relevant space.

To derive a semiparametric efficiency bound for this model, we follow the strategy of

[1] — in order to consider the likelihood functions of one-dimensional submodels local to
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the true model, we organize local deviations from the model using real-valued t ∈ [0, t0]

for some t0 > 0. Let ξ := (θ′, β′)′, and consider a curve t 7→ (ξt, gt, γt, bt) from [0, t0] into

Rp×L2(R, λ)×Γ×B that passes through (ξ0, g0, γ0, b0) at t = 0. The score function for

the model with respect to t (treating t as if it were the parameter to be estimated) is

S0 =
2q̇(y|W )

q0(y|W )
+

2ḃ(W )

b0(W )
(2.1)

where q̇ = d
dtqt(y|W )|t=0 is tangent to qt at t = 0 and all other “dotted” quantities are

defined analogously. The Fisher information for the parameter ξ is

iF = E
[
S2
0

]
= E

[
4q̇2(y|W )

q20(y|W )
+

4ḃ2(W )

b20(W )

]
(the zero-mean property of score functions implies that the cross term in the quadratic

is zero). Therefore

iF = 4E

[
q̇2(y|W )

q20(y|W )

]
+ 4

∫
Rp

ḃ2(w)dw

= 4EW

[∫
R
q̇2(y|W )dy

]
+ 4

∫
Rp

ḃ2(w)dw.

As noted in [1], the above conditions are not enough to generally characterize infor-

mative efficiency bounds. We require that the functions considered in Fisher information

calculations come from the subset of feasible score functions, which are those functions

in Rp × L2(R, λ) × Γ × B that are locally (i.e., for t ∈ [0, t0]) linear in t (see [1, p. 27]

for a longer discussion of this condition). Feasible score functions are τ̇ ∈ Ṫ , where

τ̇ = (ξ̇, ġ, γ̇, ḃ) denote parts that go towards defining a score function S0. Exactly which

functions are feasible (i.e., belong in Ṫ ) depends on the identification conditions presented

below. However, we can specify many characteristics of these functions given model (1.1).

Regardless of the identification condition, we require that for any model, ġ ∈ L2(R, b200),

where b200 is defined as the density of X0, and ξ̇ ∈ Rp (feasible ḃ are described below).

We take as our parameter of interest ρ(τ) := c′ξ, where c ∈ Rp is arbitrary and included

so that the parameter is real-valued. For the purposes of our efficiency calculation, we

assume that this is differentiable relative to the tangent set (which will be defined below

on a case-by-case basis); that is, we assume limt→0
1
t (c
′ξt − c′ξ) = c′ξ̇ = ρ̇(τ̇) for all τ̇ in

the tangent set. We define the Fisher inner product for any feasible τ̇1 and τ̇2 by

〈τ̇1, τ̇2〉F = 4EW

[∫
R
q̇1(y|W )q̇2(y|W )dy

]
+ 4

∫
Rp

ḃ1(w)ḃ2(w)dw
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The Riesz Representation Theorem implies that there exists a τ∗ such that

c′ξ̇ = ρ̇(τ̇) = 〈τ∗, τ̇〉F .

See [15, p. 363] or [1, § 2] for more on this topic. We calculate the efficiency bound by

first solving for τ∗ using the above equality. Next, the efficiency bound is calculated by

evaluating the Fisher information iF at (q∗, b∗); that is, the information bound is equal

to 〈τ∗, τ∗〉F .

Here we generally characterize Ṫ , the space of feasible score functions, although the

cases considered below will have additional specific features that depend on identification

condition. We use linZ to denote the closed linear span of elements of a set Z (defining

tangent spaces using closed spaces to ensure existence and uniqueness of τ∗ (cf. [15,

p. 363])). Because the model considered here is so similar to the partially linear model

of [1, §8], we may use their characterization of the tangent space of vectors near γ0; that

is, Lemma B.2 of [1] implies that

lin T (Γ, γ0) =

{
γ̇ : L2(R× Rp0 , λ× b̃200) :

∫
R
γ̇(u|W0)γ0(u|W )du = 0 w.p.1

}
where b̃200 is the density of W0. We note in passing that the proof of this assertion

is constructive, using parametric submodels chosen to be in the tangent space; more

recently, [16] have proposed a different construction for dynamic models of conditional

quantiles. [1, Lemma B.1] implies that the closed linear span of vectors ḃ tangent to B

at b0 is

lin T (B, b0) =

{
ḃ ∈ L2(Rp, λ) :

∫
Rp

ḃ(w)b0(w)dw = 0

}
Such a tangent set characterization is referred to in [15, p. 363-4] as the “maximal tangent

set” for (B, b0). For feasibility, we require ġ ∈ L2(R, b200). Collecting these conditions

results in a complete characterization of the tangent space Ṫ :

Ṫ = Rp × L2(R, b200)× linT (Γ, γ0)× linT (B, b0). (2.2)

τ̇ = (ξ̇, ġ, γ̇, ḃ) ∈ Ṫ is a necessary condition for feasible score functions (as functions of

τ̇) in efficiency calculations below. Feasible functions q̇ are constructed from these parts

via the identity (arrived at by differentiating qt(y|W ) = γt(y− g0(X ′θt)−Z ′βt|W ) with

respect to t)

q̇(y|W ) = γ̇(ε|W0)− γ′0(ε|W )
(
ġ(X0) + g′0(X0)X ′θ̇ + Z ′β̇

)
, (2.3)
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and these functions are used in Fisher information calculations that provide the semi-

parametric efficiency bound.

3. The model with independent errors

Suppose that the model of interest is model (1.1), where ε is independent of W ,

and the semiparametric efficiency bound for estimators of ξ0 is desired. One example

discussed in [1, §8] is the semiparametric efficiency bound for estimators of the finite-

dimensional parameter in a partially linear model with ε distributed independently of

W . We use the solution method of [1] for this model, which represents a minor extension

of their results. In the next Section we consider a solution method when the shape of γ0

and q0 may depend on covariates.

Independence of ε implies that q0(y|W ) = γ0(ε). Here γ ∈ Γ′, which is simpler than

Γ defined above:

Γ′ =

{
γ : R→ R : γ2(ε) > 0,

∫
R
γ2(u)du = 1,

γ(ε) is bounded and continuous, and

∫
R

(γ′(u))
2

du <∞
}

and

lin T (Γ′, γ0) =

{
γ̇ : L2(R, λ) :

∫
R
γ̇(u)γ0(u)du = 0

}
.

Feasible γ̇ are elements of this space. Therefore vectors τ̇ can be written τ̇ = (ξ̇, ġ, γ̇, ḃ) ∈

Ṫ ′, where Ṫ ′ = Rp × L2(R, b200) × linT (Γ′, γ0) × linT (B, b0). Theorem 3.1 collects the

vector τ∗ and the semiparametric efficiency bound for this model. Below we use E [X]
−1

to denote (E [X])−1 in simple expressions, in order to reduce the great number of paren-

theses that would otherwise result.

Theorem 3.1. Assume the model is (1.1) and that ε is independent of W . Then the
solution vector τ∗ such that 〈τ∗, τ̇〉F = c′ξ̇ for arbitrary c ∈ Rp, and all τ̇ ∈ Ṫ ′ is

τ∗ = (ξ∗, g∗, γ∗, b∗) =

(
E
[
S̃S̃′

]−1
c,−E

[
W̃ |X0

]
E
[
S̃S̃′

]−1
c, 0, 0

)
.

where ψ0(ε|W0) = −2γ′0(ε)/γ0(ε), W̃ = [ g′0(X0)X
′ Z′ ]′ and

S̃ = ψ0(ε)
(
W̃ − E

[
W̃ |X0

])
.
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Furthermore, the semiparametric efficiency bound for estimators of ξ0 is

E
[
S̃S̃′

]−1
.

We leave the proof of Theorem 3.1 here because it is illustrative of the technique used

in the proof of the main Theorem presented in the next Section.

Proof. As discussed above, we find the semiparametric efficiency bound for estimators of
c′ξ0, because it is relatively simple to calculate for a scalar condition, and this generalizes
immediately to the important bound, namely that for estimators of ξ0. We find τ∗ by
solving the equation that it must satisfy to be feasible: 〈τ∗, τ̇〉F = c′ξ̇ for all τ̇ ∈ Ṫ ′. Then
the components of τ∗ are assembled to find q∗ using (2.3). The equation 〈τ∗, τ̇〉F = c′ξ̇
is equivalent to

4E

[
q∗(y|W )q̇(y|W )

q20(y|W )

]
+ 4

∫
Rp

b∗(w)ḃ(w)dw = c′ξ̇,

or using (2.3),

4E

[
γ∗(ε)− γ′0(ε)

(
g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗

)
γ0(ε)

×

γ̇(ε)− γ′0(ε)
(
ġ(X0) + g′0(X0)X ′θ̇ + Z ′β̇

)
γ0(ε)

]
+ 4

∫
Rp

b∗(w)ḃ(w)dw = c′ξ̇.

This implies a system of several equations:∫
Rp

b∗(w)ḃ(w)dw = 0

E

[
γ∗(ε)− γ′0(ε) (g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗)

γ20(ε)
γ̇(ε)

]
= 0

E

[
γ∗(ε)− γ′0(ε) (g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗)

γ20(ε)
γ′0(ε)ġ(X0)

]
= 0

−4E

[
γ∗(ε)− γ′0(ε) (g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗)

γ20(ε)
γ′0(ε)g′0(X0)X ′

]
θ̇ = c′1θ̇

−4E

[
γ∗(ε)− γ′0(ε) (g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗)

γ20(ε)
γ′0(ε)Z ′

]
β̇ = c′2β̇

where the arbitrary vector c ∈ Rp is broken into conformable subvectors c1 and c2 in
the final two equations. The first equation implies that b∗ ≡ 0; this is also a feasible
function. From the next equation one sees that

γ∗(ε) = γ′0(ε)E [g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗]

satisfies the equation for all γ̇. The next equation implies similarly that

g∗(X0) = −E [g′0(X0)X ′θ∗ + Z ′β∗|X0]
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which is square integrable under our assumptions (and therefore feasible). Inserting this
solution for g∗ in the expression for γ∗ one finds γ∗ ≡ 0, which is also feasible. Now
we use these solutions and consolidate the final two equations into one vector equation,
recalling the definition W0 = [X0 Z

′ ]′ and introducing notation W̃ = [ g′0(X0)X
′ Z′ ]′ as in

the statement of the Theorem:

4E

γ′0(ε)
(
W̃ − E

[
W̃ |X0

])′
ξ∗

γ20(ε)
γ′0(ε)W̃ ′

 ξ̇ = c′ξ̇. (3.1)

Here we make some more definitions: let ψ0(ε) = −2γ′0(ε)/γ0(ε) (which is equal to
d
du log γ20(u)), and let

S̃ = ψ0(ε)
(
W̃ − E

[
W̃ |X0

])
.

Then we rewrite the previous display as

ξ̇′E

[
ψ2
0(ε)

(
W̃ − E

[
W̃ |X0

])(
W̃ − E

[
W̃ |X0

])′]
ξ∗ = ξ̇′E

[
S̃S̃′

]
ξ∗ = ξ̇′c.

This implies

ξ∗ = E
[
S̃S̃′

]−1
c,

and after solving for τ∗ one arrives at

τ∗ = (ξ∗, g∗, γ∗, b∗) =

(
E
[
S̃S̃′

]−1
c,−E

[
W̃ |X0

]
E
[
S̃S̃′

]−1
c, 0, 0

)
. (3.2)

Now consider q∗. Using the components of the above solution,

q∗(y|W ) = −γ′0(ε)
(
W̃ − E

[
W̃ |X0

])′
E
[
S̃S̃′

]−1
c

=
1

2
γ0(ε)ψ0(ε)

(
W̃ − E

[
W̃ |X0

])′
E
[
S̃S̃′

]−1
c

=
1

2
γ0(ε)S̃′E

[
S̃S̃′

]−1
c (3.3)

This relies on the fact that q0(y|W ) = γ0(ε). Expression (3.3) will be used to extend the
model to more general cases where the density of ε may depend on covariates.

Calculating the Fisher information of τ∗ results in the lower bound for estimators of
c′ξ0: in this case,

iF = 4E

[
(q∗(y|W ))

2

q20(y|W )

]
+ 4E

[
(b∗(W ))

2
]

= c′E

[
E
[
S̃S̃′

]−1
S̃S̃′E

[
S̃S̃′

]−1]
c

= c′E
[
S̃S̃′

]−1
c,

This implies that the lower bound for estimators of ξ0 is E
[
S̃S̃′

]−1
because c is arbitrary.
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Note that the S̃ given in the Theorem above is not exactly analogous to the efficient

score given in other work (where the efficient score is given by projecting the score func-

tion on a tangent space). Because we work with square-root densities, the calculations

are slightly different — for example, S̃ above is not necessarily mean zero, and calculat-

ing the efficiency bound results from evaluating the variance of S0 given in (2.1) instead

of S̃. However, the efficiency bound is most easily expressed in this context using S̃; of

course, the resulting efficiency bound is the same, and only the calculations leading to

this bound are different.

4. Likelihood when ε is heteroskedastic

Now suppose that the model is (1.1), but the density of ε is allowed to change its

shape with W . How might one extend Theorem 3.1 to account for γ0 that depends

on ε and W? In this Section we keep the notation of the previous section, with one

important exception. Here we use ψ0 to refer to functions of ε conditional on W ; that

is, let ψ0(ε|W ) = −2γ′0(ε|W )/γ0(ε|W ). Thus, in this section we assume Ṫ is the one

specified in (2.2). Theorem 4.1 presents our result, which is that the efficiency bound

takes the same basic form as in the independent case, but with a more complicated score

function.

Theorem 4.1. Assume the model is (1.1) and that the shape of the density of ε may
depend on W . Then the solution vector τ∗ such that 〈τ∗, τ̇〉F = c′ξ̇ for arbitrary c ∈ Rp,
and all τ̇ ∈ Ṫ is

τ∗ = (ξ∗, g∗, γ∗, b∗) =

(
E
[
S̃S̃′

]−1
c,−E

[
W̃ |X0

]
E
[
S̃S̃′

]−1
c, 0, 0

)
.

where ψ0(ε|W0) = −2γ′0(ε|W )/γ0(ε|W ), W̃ = [ g′0(X0)X
′ Z′ ]′ and

S̃ = ψ0(ε|W )

W̃ − E
[
ψ2
0(ε|W )W̃ |X0

]
E [ψ2

0(ε|W )|X0]


Furthermore, the semiparametric efficiency bound for estimators of ξ0 is

E
[
S̃S̃′

]−1
.
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Proof. As before, the function τ∗ must satisfy 〈τ∗, τ̇〉F = c′ξ̇ for all τ̇ ; in other words,

4E

[
γ∗(ε|W0)− γ′0(ε|W )

(
g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗

)
γ0(ε|W )

×

γ̇(ε|W0)− γ′0(ε|W )
(
ġ(X0) + g′0(X0)X ′θ̇ + Z ′β̇

)
γ0(ε|W )

]
+ 4

∫
Rp

b∗(w)ḃ(w)dw = c′ξ̇

for all τ̇ ∈ Ṫ . The only difference between this and the analogous expression in the
previous Section is that now γ is a function of ε and W .

∫
Rp

b∗(w)ḃ(w)dw = 0

E

[
γ∗(ε|W0)− γ′0(ε|W ) (g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗)

γ20(ε|W )
γ̇(ε|W0)

]
= 0

E

[
γ∗(ε|W0)− γ′0(ε|W ) (g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗)

γ20(ε|W )
γ′0(ε|W )ġ(X0)

]
= 0

−4E

[
γ∗(ε|W0)− γ′0(ε|W ) (g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗)

γ20(ε|W )
γ′0(ε|W )g′0(X0)X ′

]
θ̇ = c′1θ̇

−4E

[
γ∗(ε|W0)− γ′0(ε|W ) (g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗)

γ20(ε|W )
γ′0(ε|W )Z ′

]
β̇ = c′2β̇

The first equation implies b∗ ≡ 0 once again. It is difficult to determine γ∗ simply by
looking at the next equation. After our experience with the independent case, we claim
that γ∗ ≡ 0 is a solution. Indeed the zero function is feasible; we need only to show that
with this proposed solution we can find feasible solutions for the other elements of τ∗,
and because the tangent space is closed, the Riesz Representation Theorem implies τ∗ is
unique.

Setting γ∗ ≡ 0 and rewriting the remaining equations results in this system of equa-
tions:

E
[
ψ2
0(ε|W ) (g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗) ġ(X0)

]
= 0 (4.1)

E
[
ψ2
0(ε|W ) (g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗) g′0(X0)X ′

]
θ̇ = c′1θ̇ (4.2)

E
[
ψ2
0(ε|W ) (g∗(X0) + g′0(X0)X ′θ∗ + Z ′β∗)Z ′

]
β̇ = c′2β̇ (4.3)

First rewrite these equations in terms of W̃ as was defined in the previous Section:

E
[
ψ2
0(ε|W )

(
g∗(X0) + W̃ ′ξ∗

)
ġ(X0)

]
= 0 (4.4)

E
[
ψ2
0(ε|W )

(
g∗(X0) + W̃ ′ξ∗

)
W̃ ′
]
ξ̇ = c′ξ̇. (4.5)

The first equation implies

g∗(X0) = −
E
[
ψ2
0(ε|W )W̃ ′|X0

]
E [ψ2

0(ε|W )|X0]
ξ∗. (4.6)
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Plugging this into the second equation, one finds

ξ̇′E

ψ2
0(ε|W )W̃

W̃ − E
[
ψ2
0(ε|W )W̃ |X0

]
E [ψ2

0(ε|W )|X0]

′
 ξ∗ = ξ̇′c. (4.7)

The above equation can be rewritten

ξ̇′E
[
S̃S̃′

]
ξ∗ = ξ̇′c, (4.8)

where

S̃ = ψ0(ε|W )

W̃ − E
[
ψ2
0(ε|W )W̃ |X0

]
E [ψ2

0(ε|W )|X0]

 (4.9)

which provides a solution for ξ∗. Because all the other elements of τ∗ satisfy all the
necessary conditions, γ∗ ≡ 0 is correct as well.

Gathering all the components of τ∗ results in the following summary:

ξ∗ = E
[
S̃S̃′

]−1
c (4.10)

g∗(X0) = −
E
[
ψ2
0(ε|W )W̃ ′|X0

]
E [ψ2

0(ε|W )|X0]
E
[
S̃S̃′

]−1
c (4.11)

γ∗ ≡ 0, b∗ ≡ 0 (4.12)

Putting these parts together results in

q∗(y|W ) =
1

2
γ0(ε|W )S̃′E

[
S̃S̃′

]−1
c

with S̃ given in (4.9).
Then the same calculations as in the independent case imply that the semiparametric

efficiency bound for estimators of c′ξ0 is c′E
[
S̃S̃′

]−1
c and the bound for estimators of

ξ0 is E
[
S̃S̃′

]−1
, because c is arbitrary.

This bound is similar to “Regression Model I” of [17, p.105-6] and Theorem 4 of [3].

It is uncommon to see the bound discussed in this section achieved by estimators in the

literature. We are only aware of [13], which considers efficient estimation of a single

index model related to (1.1) by setting Z = 0. Interestingly, [13] offers something more

general than it appears is claimed at first glance. There it is stated that the expected

value of y conditional on covariates is of interest, so one might expect it is only as

efficient as the specialized bound discussed below in Section 5.1. However, this expected

value condition is only an identification condition — note that without more conditions,
11



the model considered in Theorem 4.1 is not necessarily identified. Their estimator is a

pseudo-maximum likelihood estimator that does not limit the investigator to consider

only the expected value of y. Accordingly, the efficiency bound that they derive matches

that given in Theorem 4.1. This is generally smaller than the bound one reaches if one

estimates only the conditional expectation of y. As mentioned above, this more restrictive

bound will be considered in Subsection 5.1. Estimators that reach this bound require

an estimate of the likelihood function as in [13]; this is the strategy also followed by, for

example, the L-estimators of [18] and [19] or section 4.4.1 of [20] for the linear model.

5. Conditional mean- and quantile identification

The result presented in Theorem 4.1 holds generally for both identification conditions

presented below because it is written in terms of the likelihood. However, most practical

estimators must deal with the fact that the likelihood is unknown. M -estimators consti-

tute a class that enjoy some optimality properties and provide clear rules with regards to

efficiency. We focus on these efficiency results here for two special M -estimators, those

designed to estimate models when it may be assumed that the error term ε has mean

zero, and when the α-quantile of its distribution is zero. We first consider the model

with mean-zero error term, and then one in which the αth quantile of the conditional dis-

tribution of ε is 0, and we discuss several estimators proposed in the literature (many of

which are M -estimators) in this light. M -estimators remain quite attractive, even if they

may appear less efficient than the optimum computed in Theorem 4.1 above. Namely,

they can be tailored to balance considerations of robustness or efficiency (either of which

may be an issue with small data sets), as the solutions to optimization problems they

are computationally attractive, and they have a well-developed and tractable asymp-

totic theory. Furthermore, the conditional mean model and the conditional α-quantile

model are easily estimated using M -estimators and have a “structural” meaning that is

easy to interpret. The efficiency bound calculated in Theorem 4.1 is the bound for the

finite-dimensional parameter of model (1.1), but the resulting regression model may then

be a conditional location model instead of a model of e.g. the conditional mean of the

response given covariates.

Nevertheless, Lemmas 5.1 and 5.2 show the necessary tradeoff that one makes when

12



using (for example) an M -estimator. Focusing on, for example, one moment of the error

distribution in the case of the conditional mean model, has the advantages listed above,

but one loses efficiency as compared to the general bound presented in Theorem 4.1. The

bounds obtained for M -estimators in [12] (or quasi-MLE methods represented by [3]) are

for a smaller tangent space than the one considered here. That makes the methods used

here complementary to those represented by, say, [12] or [17] — here we give efficiency

bounds for model (1.1), rather than for a class of estimators of that model, in the spirit

of Stein’s “least-favorable submodel”, and does not depend on the form of the estimators

used. There does not appear to be a good way to tailor this method to classes of

estimators. However, in the Lemmas below we show the difference between the efficiency

bound for all estimators of a model and estimators of a specific form, like M -estimators.

5.1. Conditional mean identification

Now we specialize model (1.1) to conditional mean-zero error models; that is, to mod-

els that satisfy E [ε|W ] = 0 or E [y|W ] = g0(X0)+Z ′β0. We also require
∫
R y

2q20(y|W )dy <

∞ w.p.1, where this second condition is an additional assumption that must be satisfied

so that the bound is informative. Arguments given in [12] show that an M -estimator

with weights depending on the inverse of σ2(ε|W ) has a variance function equal to the

efficiency bound (whether or not such a weighting function is feasible in practice). The

semiparametric efficiency bound for M -estimators of ξ0 in this model is

Σµ = E

σ(W )−2

W̃ − E
[
σ−2(W )W̃ |X0

]
E [σ−2(W )|X0]

W̃ − E
[
σ−2(W )W̃ |X0

]
E [σ−2(W )|X0]

′

−1

(5.1)

where σ2(W ) = E
[
ε2|W

]
. The following Lemma shows that this bound is larger (in

a positive semidefinite sense) than the bound given in Theorem 4.1. The proof of this

Lemma is contained in the Appendix. This result comes from the fact that the model

in this subsection only specifies one moment of the conditional distribution of the error

conditional on covariates.

Lemma 5.1. For model (1.1) with error term specified to have mean equal to zero,

Σµ − E
[
S̃S̃′

]−1
is positive semidefinite, where Σµ is defined in (5.1) and S̃ is defined in Theorem 4.1.
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An efficient estimator for the generalized partial linear single-index model has been

proposed in [3]. More recently estimation of model 1.1 with homoskedastic errors was

reconsidered in [10]. There they showed that accounting for the imposition of identifi-

cation conditions on θ0 can results in a more efficient estimator of θ0 — although not

β0 — than was previously thought possible. This is also addressed for a generalized

single-index model by [21].

Efficiency via weighting in a local-linear estimator of the single-index model (that is,

model (1.1) with Z = 0) is considered in [22], who notes that as long as heteroskedasticity

only depends on X0, weighting by the inverse of the variance function results in an

efficient estimator. In a single-index model, W̃ = g′0(X0)X, and γ0(ε|X) = γ0(ε|X0). In

the special case that the variance also depends only on X0, the efficiency bound is

E
[
σ(X0)−2 (g′0(X0))

2
(X − E [X|X0]) (X − E [X|X0])

′
]−1

,

which agrees with the variance given in Theorem 5.2 of [22] when using the optimal

weights ω(X0) = σ−2(X0). The efficiency bound above also matches equation (4.4) of [12]

when specialized to the mean-zero identification condition. When ε is homoskedastic,

the variance function is not a function of X and the expression for the bound reduces

further to

σ2E
[
(g′0(X0))

2
(X − E [X|X0]) (X − E [X|X0])

′
]−1

. (5.2)

All the above estimators are for the model (1.1) or the single-index model — that is,

the model that results from setting Z = 0. We note that, although we focus on these

two models, these results could be further specialized to the partially-linear and linear

models. See [1] for more discussion of the bound in those models when error terms are

independent. Our results augment the results of [1] to the case where the density of ε

may depend on W .

5.2. Conditional quantile identification

Next we assume the model (1.1) is identified using the restriction Qy|W (α|W ) =

g0(X0) + Z ′β0, or Qε|W (α|W ) = 0 w.p.1. Expressed in terms of conditional density

functions of ε in terms of models in the tangent space Ṫ , this means
∫ 0

−∞ γ2t (u|W )du =

α w.p.1.

14



The semiparametric efficiency bound for M -estimators of ξ0 under this restriction is

Σα = E

 γ40(0|W )

α(1− α)

W̃ − E
[
γ40(0|W )W̃ |X0

]
E [γ40(0|W )|X0]

W̃ − E
[
γ40(0|W )W̃ |X0

]
E [γ40(0|W )|X0]

′

−1

.

(5.3)

The above bound for the α-quantile case matches that given in [12] when specializing

the identification condition to a conditional quantile condition.

Lemma 5.2 shows that this bound is larger (in a positive definite sense) than the

bound given in Theorem 4.1. Its proof is also contained in the Appendix. Once again,

this bound is larger than the bound in Theorem 4.1 because only one quantile of the

conditional distribution is specified in this model.

Lemma 5.2. For model (1.1) with error term specified to have α-quantile equal to zero,

Σα − E
[
S̃S̃′

]−1
is positive semidefinite, where Σα is defined in (5.3) and S̃ is defined in Theorem 4.1.

Recently [23] have discussed the case of general M -estimators for single-index models

(i.e., with Z = 0), although their focus was on properties of a large class of M -estimators

and not efficiency for the two special cases considered here. See also [8] for a thorough

characterization of regularity conditions required for M -estimation of the single-index

model (and model (1.1) by extension). In [8] an M -estimator for a single-index quantile

regression is proposed; their estimator is not semiparametrically efficient, but their focus

was on deriving a weak set of regularity conditions under which asymptotic distributions

for a large set of estimators could be verified.

Efficient estimation of the partially-linear model y = g0(X)+Z ′β0 +ε was considered

in [24], where Qε|W (τ |W ) = 0; this is a special case of the result of the bound for

conditional α-quantile models given above. There may be reasons for considering the

model (1.1), namely because this model may suffer from the curse of dimensionality

(because g0 is a multivariate function of X). Our results show that this estimator is not

generally efficient. However, the discussion in [24] implies that weighting the estimator

would result in efficiency only when the scale of the distribution of the error depends on

X, and proposes a one-step estimator when the variance function is a general function

of W (in that case weighting would not be sufficient to produce an efficient estimator of
15



the type considered in the paper). This estimator remains quite attractive, however, due

to the simplicity with which it may be implemented and its feasibility.

A local linear single-index quantile regression estimator is proposed in [7] — that

is, an estimator of model (1.1) with Z = 0 and Qε|X(α|X) = 0. They show that their

estimator has the following asymptotic covariance matrix:

Σ = α(1− α)C−11 C0C
−1
1 , (5.4)

where

Cj = E
[(
γ20(0|X)

)j
(g′0(X0))

2
(X − E [X|X0])(X − E [X|X0])′

]
. (5.5)

It can be seen that this estimator is not efficient because the variance matrix does not

match Σα given in (5.3). When the scale of the distribution of the error term only

depends onX0, the argument given in [25, p.161] implies that C−11 C0C
−1
1 −C

−1
2 is positive

semidefinite (provided all the Cj are p.s.d.); C2 is what results from using optimal weights

ω(X0) = γ20(0|X0), and it is what results from simplifying (5.3) to the case where the scale

only depends on X0. See [26] for a discussion of weighted linear median regression. As

is pointed out in [27] and [26] for linear quantile regression models, weighted estimators

should have smaller variance than unweighted estimators. However, under more general

heteroskedasticity of ε it may not be possible to achieve efficiency simply by weighting;

see the discussion in [24, p. 11]. In this case, sample splitting (used in [27]) or a one-step

estimator (used in [24]) could be used. Another estimator was proposed in [28]; this

estimator is not efficient, although it has the great advantage that it converges almost

surely and is more efficient than average derivative estimators as represented by, say [29].

Finally, when ε is independent of X, the bound for the single index model becomes

α(1− α)

γ40(0)
E
[
(g′0(X0))

2
(X − E [X|X0]) (X − E [X|X0])

′
]−1

similar to expression (5.2).

6. Conclusion

We calculate the semiparametric efficiency bounds for the partially linear single-

index model using the simple solution model demonstrated in [1]. Our results allow us to

compare the asymptotic variance of popular M -estimators with this bound and to show

that they are different in general.
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Appendix A. Proof of Lemmas 5.1 and 5.2

Proof of Lemma 5.1. In order to find the information bound, we must find the minimum
value that the information can take under the mean-zero condition. When considering
the minimum value that ψ0 may take, note that (cf. [20, p. 51])

1 =

(
2

∫
R
uγ′0(u|W )γ0(u|W )du

)2

≤
∫
R
ψ2
0(u|W )γ20(u|W )du

∫
R
u2γ20(u|W )du

= E
[
ψ2
0(ε|W )|W

]
σ2(W )

(σ2(W ) is finite because the second moment of ε conditional on W is assumed to exist).
Therefore we have the bound E

[
ψ2
0(ε|W )|W

]
≥ σ−2(W ) for almost all W , where σ−2(W )

denotes (σ2(W ))−1. It can be verified that this inequality holds with equality at the

normal model; that is, γ20(ε|W ) = (2πσ2(W ))−1/2 exp{ −ε2
2σ2(W )}.

Now consider the matrices

Ξ =

 ψ2
0(ε|W )W̃W̃ ′ E

[
ψ2
0(ε|W )W̃ |X0

]
E
[
ψ2
0(ε|W )W̃ ′|X0

]
E
[
ψ2
0(ε|W )|X0

]
 (A.1)

and

Ω =

 σ−2(W )W̃W̃ ′ E
[
σ−2(W )W̃ |X0

]
E
[
σ−2(W )W̃ ′|X0

]
E
[
σ−2(W )|X0

]
 . (A.2)

Then E [Ξ− Ω] is positive semidefinite since (using the relationship E
[
ψ2
0(ε|W )|W

]
≥

σ−2(W ))

E [Ξ− Ω] = E

[(
ψ2
0(ε|W )− σ−2(W )

) [
W̃ ′, 1

] [W̃
1

]]
. (A.3)

This means that E
[
Ω−1 − Ξ−1

]
is positive semidefinite, and using a partitioned inverse

formula for the upper-left p× p submatrix of each matrix, we have the result.

Proof of Lemma 5.2. For a model of the α-quantile of the distribution of ε conditional
on W , in a manner similar to [20, p. 54], consider that

(1− α)γ40(0|W ) = (1− α)

(∫ 0

−∞
2γ′0(u|W )γ0(u|W )du

)2

= (1− α)

(∫ 0

−∞

2γ′0(u|W )

γ0(u|W )
γ0(u|W )γ0(u|W )du

)2

≤ (1− α)

∫ 0

−∞
ψ2
0(u|W )γ20(u|W )du

∫ 0

−∞
γ20(u|W )du

= α(1− α)

∫ 0

−∞
ψ2
0(u|W )γ20(u|W )du
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where as before, ψ0(ε|W ) = −2γ′0(ε|W )/γ0(ε|W ). Similarly,

αγ40(0|W ) = α

(
−
∫ ∞
0

2γ′0(u|W )γ0(u|W )du

)2

= α

(∫ ∞
0

2γ′0(u|W )

γ0(u|W )
γ0(u|W )γ0(u|W )du

)2

≤ α
∫ ∞
0

ψ2
0(u|W )γ20(u|W )du

∫ ∞
0

γ20(u|W )du

= α(1− α)

∫ ∞
0

ψ2
0(u|W )γ20(u|W )du.

Adding these two inequalities, one finds that

γ40(0|W )

α(1− α)
≤
∫
R
ψ2
0(u|W )γ20(u|W )du = E

[
ψ2
0(ε|W )|W

]
for almost all W . It can be verified that this inequality holds with equality at the “asym-

metric Laplace” model, i.e., the model with density γ20(ε|W ) = α(1−α)
σ(W ) exp{− 1

σ(W )ε(α−
I(ε < 0))}. This implies the bound in the statement of the Corollary using a similar
method to that used in Lemma 5.1.
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