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Abstract

Goodness of fit tests based on parametric empirical processes have nonstandard limiting distri-

butions when the null hypothesis is composite — that is, when parameters of the null model are es-

timated. Several analytic solutions to this problem have been suggested, including the calculation of

adjusted critical values for these nonstandard distributions and the transformation of the empirical

process such that statistics based on the transformed process are asymptotically distribution-free.

The approximation methods proposed by Durbin (1985) can be applied to conduct inference for

tests based on supremum-norm statistics. The resulting tests have quite accurate size, a fact which

has gone unrecognized in the econometrics literature. Some justification for this accuracy lies in the

similar features that Durbin’s approximation methods share with the theory of extrema for Gaussian

random fields and for Gauss-Markov processes. These adjustment techniques are also related to

the transformation methodology proposed by Khmaladze (1981) through the score function of the

parametric model. Simulation experiments suggest that in small samples, Durbin-style adjustments

result in tests that have higher power than tests based on transformed processes, and in some cases

have higher power than parametric bootstrap procedures.

Keywords: Goodness of fit test, Estimated parameters, Gaussian process, Gauss-Markov process,

∗The author wishes to express great appreciation to Roger Koenker for countless helpful discussions and able direction.
This research also benefited from the valuable comments of Juan Carlos Escanciano, Andreas Hagemann, Marie Hušková,
and Kyungchul Song. The author also wishes to thank Peter C. B. Phillips, the Coeditor and referees at Econometric Theory
for their helpful suggestions. Finally, the author wishes to thank the late James Durbin, who in many ways inspired this entire
project.

1



Boundary crossing probability, Martingale transformation

JEL Classification Code: C12, C14, C46

1 Introduction

Empirical processes are central to the theory of supremum-norm specification tests. The analysis of

the empirical process
p

n(Fn − F0) when F0 is a fixed distribution function is quite well established,

but a general study of the convergence of empirical processes when F has estimated parameters was

first conducted by Durbin (1973a) and Neuhaus (1976). The limiting distributions of these processes

is significantly more complex than the limiting distribution of the simpler process. As a result, the

evaluation of sup-norm test statistics based on these processes has been an enduring problem. Given

this difficulty, inference based on an empirical process when parameters have been estimated is quite

often accomplished via simulation techniques. There are, however, alternative solutions that can be

derived analytically. In this paper, two such solutions are compared with each other and with some

other proposed tests of model specification.

Parametric models, when reasonably accurate, help analysts interpret data in a manner that is easy

to understand and communicate. However, model misspecification can result in incorrect inferences

and policy decisions. The tests discussed here illustrate some difficulties in the evaluation of specifi-

cation tests when the relevant hypothesis is with respect to a parametric model — a family of curves

indexed by a finite-dimensional parameter. No matter what the actual value of the parameters of the

model, the assumption that the data may be reasonably described by some member of the hypothesized

parametric model dictates which estimators may be considered optimal and how to conduct inference.

For example, it is often convenient to use an exponential model when modeling duration data,

due to its simple distribution, density and hazard functions. However, in order to confidently use this

model in applications, one would like to be sure that the exponential model provides a reasonable

approximation to the real distribution of the data. Suppose an analyst is confronted with a sample

{X i}ni=1 that are iid with distribution F . If the analyst is only concerned with testing the adequacy of
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the exponential model, that is, that the F describing the distribution of the sample is

Fex p(x ,λ) = 1− e−λx , x ∈ R+, λ > 0 (1)

for some value of λ (i.e., but without the hypothesis that λ = λ0). A convenient and powerful test for

this hypothesis uses a supremum-norm statistic; that is, the largest difference between the empirical

cumulative distribution function Fn and the theoretical model Fex p:

Tn = sup
x∈R+

p
n
�

�Fn(x)− Fex p(x ,λ∗)
�

� , (2)

where a candidate member of the exponential model, corresponding to a specific value λ∗, must be

used in the test statistic. Were there also a reasonable hypothesized value λ∗ = λ0, then the typical

Kolmogorov-Smirnov asymptotic distribution can be used for inference. However, the distribution of Tn

and corresponding critical values or p-values are affected by the value of λ∗ used by the analyst when

no λ0 is given by hypothesis. Subsection 5.1 discusses methods for drawing inferences from Tn when

the candidate λ∗ is the efficient (under the null hypothesis) maximum likelihood estimator λ̂= X̄−1.

The linear models often used in applied work offer another example of the applications of the

methods discussed in this paper; the most basic of such models assumes that the joint distribution of a

response y and covariates X is well-described by the model

yi = X>i β +σε, (β ,σ) ∈ Rp ×R+. (3)

The use of this model implicitly assumes the distribution of ε is a member of a location-scale family

(i.e., one such that the cumulative distribution function of ε satisfies F(e) = F0((e− µ)/σ) for a fixed

function F0 and some µ and σ). Furthermore, when the distribution of ε is assumed to be Gaussian,

ordinary least squares is the optimal estimator, regardless of the specific values of β and σ. When

the error distribution is wrongly assumed to be the Gaussian model, the least squares estimator may

be inefficient and inference regarding the magnitudes and statistical significance of β and σ can be

incorrect. Under the assumption that the model is correctly specified — both the linear regression form

and the Gaussianity of the error term — a sup-norm test statistic used to test the hypothesis F0 ≡ Φ,
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the standard normal distribution function, is

T
′

n = sup
e∈R

p
n
�

�Fn(e)−Φ(e/σ̂)
�

� (4)

where now Fn is the empirical distribution function of the least squares residuals {yi − X>i β̂}
n
i=1. Once

again, the use of (β̂ , σ̂) in the construction of the test statistic causes the distribution of T
′

n to be

nonstandard. This example is discussed more in Subsection 5.3.

One solution to the problem of nonstandard distributions for supremum-norm tests (parallel to

techniques devised for example by Durbin et al. (1975) for Cramér-von Mises-type tests,) is to conduct

distributionally dependent inference. For sup-norm tests, Durbin (1973b, 1975, 1985), explored a

number of such inferential methods and these results deserve greater recognition as an alternative

methodology. In particular, it is demonstrated below that Durbin (1985) provides a collection of simple

approximations that are accurate, generalizable, and involve only modest computation. These rely on

approximate boundary crossing probabilities that are analyzed in Section 3. Some justification for their

great accuracy is provided by links that the approximations have to approximation results from other

areas of probability theory. One of Durbin’s approximations is a special case of results derived using the

theory of extrema of Gaussian fields (see, for example, Piterbarg (1996)). Another is an approximation

to the distribution of the statistic using a simplification that arises for Gauss-Markov processes. The

present work supports and refines Durbin’s research in the methodology of goodness of fit testing in

econometrics — even though a goodness of fit problem was the primary applied example of Durbin

(1985), his boundary crossing results have been largely overlooked.

Another solution to the problem of testing goodness of fit with estimated parameters is the mar-

tingale transform method proposed by Khmaladze (1981). This approach has received attention in

the statistics and econometrics literature recently, notably in Koenker and Xiao (2002); Bai (2003);

Khmaladze and Koul (2004); Delgado and Stute (2008) and Khmaladze and Koul (2009). The mar-

tingale transform method employs a Doob-Meyer decomposition to transform the empirical process so

that it is asymptotically distribution-free, a property that test statistics, as functionals of the process,

inherit. This is convenient because the resulting statistics are asymptotically pivotal, implying that

drawing inferences using (asymptotic) p-values or critical values is the same procedure, regardless of

the hypothesized parametric model. This method may be applied quite generally: see for example

4



Song (2010) for its application to semiparametric models, or Li (2009), who analyzes this method as

a technique of projection onto a series of orthogonal polynomials, drawing on the work of Bickel et al.

(1993) and Cabaña and Cabaña (1997). Wooldridge (1990) also proposes a similar testing strategy,

using orthogonal projections to remove the effect of parameter estimation in moment-based specifica-

tion tests. It is shown in Subsection 4.2 that when adapted to the relevant setting, Wooldridge’s test

statistic is different because it does not rely on all of the information contained in the null hypothesis

(which is not finite-dimensional) in the same way as Khmaladze’s projection.

Durbin’s approximate boundary crossing probabilities are compared with Khmaladze’s martingale

transform in a few simple situations. The essentials of each technique are presented and applied to

the context of one-sample tests of normality and exponentiality, drawing some connections and elab-

orating upon the example given in Durbin (1985, p. 117). Finally, simulation experiments investigate

the empirical size and power of these methods and compare them to bootstrap-based procedures. The

adjusted inferential procedures result in approximately the same size and power as tests using a trans-

formed process, although the experiments suggest differential power performance over the space of

alternatives.

Adjusted inferential procedures appear attractive on several dimensions. Their size appears roughly

comparable to simulation-based tests, and they have better power in some cases, while they often

appear to have power at least as good as that of tests based on transformed empirical processes. On

the other hand, their implementation is quite straightforward — transformation of the process is not

required and a simple formula (presented in Theorem 1 below) is often sufficient to conduct accurate

inference.

2 Parametric models

Consider a sample of size n from a random variable with distribution function F . A goodness-of-fit test

is defined as a test of the hypothesis that F is a member of a parametric model; that is, H0 : F ∈ F :=

{F(x ,θ); x ∈ X ,θ ∈ Θ}, with X ⊆ R and Θ ⊆ Rp. Process-based specification tests for F are typically

based on one of the following empirical processes: the uniform empirical process

Vn(x) =
p

n(Fn(x)− F(x ,θ0)), x ∈ X (5)
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for simple null hypotheses, or the parametric empirical process

V̂n(x) =
p

n(Fn(x)− F(x , θ̂)) x ∈ X (6)

for composite null hypotheses, where θ̂ is some estimate of θ0 and Fn is the empirical distribution

function.

It is assumed that all members of F are absolutely continuous and mutually absolutely continuous.

The uniform empirical process is convenient because under these assumptions on F an inverse function

F−1 is well defined and we can make the time transformation t = F(x ,θ0), which makes process (5)

equivalent to

vn(t) =
1
p

n

n
∑

i=1

�

I(F(X i ,θ0)≤ t)− t
�

, t ∈ [0, 1]. (7)

That is, under the null hypothesis, process (5) is equivalent to a process based on n iid realizations of

a uniform random variable and the value of Vn (or vn) measures the difference between the empirical

distribution of {F(X i ,θ0)}i and the uniform distribution function. Donsker’s theorem implies that vn

converges weakly to v, a Brownian bridge on [0,1] — equivalently, Vn converges weakly to B ◦ F , a

time-changed Brownian bridge.

In many cases of practical interest the investigator is interested in the parametric model F but

reluctant to specify θ0. It may be hoped that similar calculations would work for both the uniform

empirical process and the parametric empirical process. However, this is unfortunately not the case.

To explore this further, we make the following two assumptions, one with respect to the parametric

model and one with respect to the parameter estimate:

A1 The model F satisfies the following condition: the function

g(t,θ) =∇θ F(x ,θ)
�

�

x=F−1(t,θ0)
(8)

is bounded and continuous in its arguments for all (t,θ) ∈ [0,1]× ν , where ν is a closed neigh-

borhood of θ0 in Θ.
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A2 There exists an estimator of the parameters θ̂n that satisfies

p
n(θ̂n− θ) = OP(1). (9)

Because the (uniform)
p

n rate of convergence of Fn to F is the same as the rate of convergence of

the estimator θ̂n to θ0, the effect of parameter estimation is not asymptotically negligible. Consider the

following decomposition of v̂n(t) (start here with the transformation t = F(x , θ̂)):

v̂n(t) =
1
p

n

n
∑

i=1

�

I(F(X i , θ̂)≤ t)− t
�

(10)

=
1
p

n

n
∑

i=1

�

I(F(X i ,θ0)≤ t)− t
�

+
p

n
�

F(F−1(t,θ0), θ̂n)− t
�

+
1
p

n

n
∑

i=1

¦�

I(F(X i ≤ θ̂)≤ t)− F(F−1(t,θ0), θ̂n)
�

−
�

I(F(X i ,θ0)≤ t)− t
�

©

(11)

Using assumptions A1 and A2 with a one-term Taylor expansion, it can be shown1 that the last term

in (11) is oP(1) uniformly in t ∈ [0, 1] and that the following asymptotic linearity result holds:

sup
t∈[0,1]

�

�v̂n(t)− vn(t) +
p

n(θ̂n− θ0)
>g(t,θ0)

�

�= oP(1). (12)

Durbin (1973a) showed that v̂n converges weakly to a mean-zero Gaussian process v̂. From (12) it is

apparent that in general the distribution of the limit v̂ may depend on the asymptotic distribution of
p

n(θ̂n− θ0) and even on the value of the parameter θ0 (through the function g).

Because the parametric empirical process depends on the distribution of
p

n(θ̂−θ0), the distribution

of (10) can be complex, but it can be simplified if more is assumed regarding the estimator θ̂n
2.

A3 Assume that θ̂n is asymptotically linear; that is,

p
n(θ̂n− θ0) =

1
p

n

n
∑

i=1

ψ(X i ,θ0) + oP(1) (13)

1See van der Vaart and Wellner (2007) for a general and elegant proof, which also applies to tests based on regression
residual processes.

2Note that it is not necessary that this relationship be known if one employs the transformation technique of Khmaladze
(1981) discussed in Section 4.
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where ψ is such that

∫

ψ(x ,θ0)dF(x ,θ0) = 0,

∫

ψ(x ,θ0)ψ
>(x ,θ0)dF(x ,θ0) = J (14)

and J is a finite p× p positive definite matrix.

Under A1-A3, it can be shown3 using (12) that (10) converges weakly to

v̂
D
= v− g>(t,θ0)

∫

ψdv (15)

which is a mean-zero Gaussian process on [0,1] with covariance function

ρ(s, t) = s ∧ t − st − g(s,θ0)
>
∫ t

0

H(r)dr − g(t,θ0)
>
∫ s

0

H(r)dr + g(s,θ0)
>J g(t,θ0) (16)

where H(t) =ψ(x ,θ0)
�

�

x=F−1(t,θ0)
. As was shown in Durbin (1973a), when a maximum likelihood esti-

mator exists and the model has a finite Fisher information matrix I(θ)we haveψ(x ,θ0) = I−1(θ0)∇θ log f (x ,θ0),
∫ t

0
H(r)dr = I−1(θ0)g(t,θ0) and J = I−1(θ0). Then the covariance function of the limiting process v̂ is

reduced to

ρ(s, t) = s ∧ t − st − g>(s,θ0)I
−1(θ0)g(t,θ0). (17)

Expressions (16) and (17) are relatively complicated: recall that vn converges weakly to v, a Brownian

bridge that has covariance function ρ(s, t) = s∧ t−st. The extra terms in (16) and (17) reflect the effect

of parameter estimation, and are the source of what has been called the Durbin problem (Koenker and

Xiao, 2002, p. 1589). In the examples discussed in Section 5, a maximum likelihood estimator exists

and so the covariance function takes the form of (17).

3 Approximate boundary crossing probabilities

Asymptotic critical values for Kolmogorov-Smirnov tests (i.e., tests using the process vn) are derived

from known formulas for boundary crossing probabilities of the limiting Brownian bridge v. For exam-

ple, the standard one-sided Kolmogorov-Smirnov test relies on critical values derived from the distri-

bution of D+ = supt∈[0,1] v(t); equivalently, the probability that v crosses some horizontal boundary.

3See for example the proof of Durbin (1973a, Lemma 3), or del Barrio (2007, Section 4.2) for an elegant derivation.
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However, analytic expressions for boundary crossing probabilities have been found for only a few spe-

cial Gaussian processes besides the Brownian motion and Brownian bridge. As described above, the

distribution of the limiting process v̂ depends in general on the hypothesized parametric model in a

nontrivial way, and the distribution of supt∈[0,1] v̂(t) is affected as well. Faced with this challenge,

Durbin (1985) proposed approximate boundary-crossing probabilities for Gaussian processes under

very weak conditions and applied these results to the process v̂.

3.1 The exact boundary crossing probability P

Let y be a continuous mean-zero Gaussian process on [0,1] starting at the origin. The original mo-

tivation of Durbin (1985) was the analysis of boundary crossing probabilities for locally Brownian

processes. Therefore, assume y has a covariance function ρ(s, t) that is differentiable in both argu-

ments for 0 ≤ s ≤ t ≤ 1. Note that this is weaker than full differentiability of ρ, because it is not

necessary that ρ be differentiable on the diagonal (for such processes, other methods are available for

the computation of boundary crossing probabilities — see Azaïs and Wschebor (2009), for example).

As an example, Brownian motion, with covariance function ρ(s, t) = s ∧ t, satisfies this assumption.

The second assumption on y is what makes the process locally Brownian: Durbin assumed that

lim
s↗t

V
�

y(t)− y(s)
�

t − s
= lim

s↗t

�

∂ ρ(s, t)
∂ s

−
∂ ρ(s, t)
∂ t

�

= ct (18)

where 0 < ct <∞ for all t. For example, Brownian motion satisfies this condition with ct ≡ 1, as do

processes with covariance functions (16) or (17), but the “incremental variance” need not be constant.

Let a > 0, and define the first passage time τa = inf{t : y(t) = a} — i.e., the first point at which y

reaches the boundary a(t)≡ a. Considering the boundary crossing probability P defined by

P(a) = P

¨

sup
t∈[0,1]

y(t)≥ a

«

, (19)

Durbin (1985) showed that P(a) can be characterized by the integral of the boundary crossing density

p(t, a) of the first passage time τa, which can be decomposed into two functions:

P(a) =

∫ 1

0

p(t, a)dt =

∫ 1

0

b(t, a) f (t, a)dt (20)
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where

b(t, a) = lim
s→t

E
�

I(s < τa)
�

a− y(s)
�

|y(t) = a
�

t − s
(21)

and

f (t, a) =
1

p

2πρ(t, t)
exp

¨

−a2

2ρ(t, t)

«

. (22)

However, b is almost always intractable; this complication motivated Durbin to propose three approxi-

mate boundary crossing probabilities.

3.2 The first approximation P1

Durbin’s first approximation, achieved simply through the removal of the indicator function from (21),

was justified by the fact that the approximation holds exactly in the special case of Brownian motion

and more generally by the fact that any Gaussian process satisfying the mild conditions outlined above

“. . . behaves locally like Brownian motion and the boundary is locally linear4” (Durbin, 1985, p. 110-

111). That is, approximation P1 starts with the following approximation to the function b:

b1(t, a) =
ρ10(t, t)
ρ(t, t)

a (23)

using the convention here and below that ρi j(s, t) := ∂ i+ jρ(s,t)
∂ si∂ t j . This approximation to b owes its simple

form to a hypothetical regression argument5. Approximations to the first passage density for y and the

boundary crossing probability are respectively

p1(t, a) = b1(t, a) f (t, a) (24)

4Durbin (1985) considered differentiable boundaries, not just constant boundaries.
5After removing the indicator function from b, we have

b1(t, a) = lim
s↗t

a− E
�

y(s)|y(t) = a
�

t − s
.

Imagine a hypothetical regression of y(s) on y(t), without an intercept. Then we would have E
�

y(s)|y(t) = a
�

= ρ(s,t)
ρ(t,t)

a.
The rest is the definition of a derivative.
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and

P1(a) =

∫ 1

0

p1(t, a)dt. (25)

Given ρ and ρ10, P1(a) is easy to compute for simple parametric models. Since the difference between

b and b1 becomes smaller as a→∞, it is clear that P1 is an accurate approximation of P for relevant

testing situations because large values of a correspond to low values of α.

3.3 The global approximation Pg and large deviations for Gaussian processes

Durbin also derived a “rough estimate” of P1 that obviates the final integration step between p1 and P1

above. This estimate is remarkably accurate for situations of practical interest. Interestingly, research

on the extrema of Gaussian processes and fields can be used to show that this estimate is asymptotically

exact as the boundary a → ∞. The results are based on the theory of large deviations for Gaussian

processes which can be found in the monograph of Piterbarg (1996).

Let the variance function of a Gaussian process y be defined as σ2(t) := ρ(t, t) and the point of

maximal variance t0 := argmaxt σ
2(t). Durbin’s global approximation Pg is

Pg(a) =
ρ10(t0, t0)
σ2(t0)







−2σ2(t0)
d2

dt2σ
2(t0)







1/2

exp

¨

−a2

2σ2(t0)

«

. (26)

This is achieved by starting with equation (24), evaluating all the non-exponential parts at t0, and

replacing the exponential part with an expansion to evaluate it. This formula is easy to use for the

purposes of calculating approximate critical values or p-values, and can be used without the step of

numerically integrating a boundary crossing density.

Some important features of Durbin’s Pg when applied to v̂ are contained in the following theorem.

This form of Pg may sometimes be easier to compute than (26).

Theorem 1. Suppose that ∂ 2

∂ x∂ θ
f (x ,θ) is bounded for all (x ,θ). Then the approximation Pg to the

probability P
�

supt v̂(t)> a
	

is

Pg(a) =
exp
n

−a2

2σ2(t0)

o

2
p

−σ2(t0)
�

ρ20(t0, t0) +ρ11(t0, t0)
�

. (27)
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A drawback to the use of Pg is that if ρ20(t0, t0) = ρ11(t0, t0) = 0 (which occurs, e.g., when testing

N (µ,σ2) with µ unspecified,) Pg does not exist6. Furthermore, it is not very clear that Pg becomes

more accurate as the boundary diverges. Both of these issues are addressed formally in the following

theorem. It is due originally to Fatalov (1992, 1993) and is part of the literature on large deviations

for Gaussian processes and fields. Note that an attractive feature of Theorem 2 is that convergence to

the true boundary crossing probability is at a relatively quick rate as the boundary diverges — Durbin’s

original approximation was made without theoretical guarantee of its accuracy, only empirical evidence

that it worked well.

Theorem 2. Suppose θ is estimated by maximum likelihood and σ2, the variance function of v̂, has a

derivative of some order 2k (k ∈ 1, 2, . . .) that is nonzero at t0 = argmaxt∈[0,1]σ
2(t). Then

P

¨

sup
t∈[0,1]

v̂(t)> a

«

= H(σ, k)
�

a

σ(t0)

�1−1/k

φ

�

a

σ(t0)

�

(1+ o(1)), a→∞ (28)

where φ is the standard normal density function,

H(σ, k) =
C

kA
Γ
�

1

2k

�

, (29)

Γ(·) is the standard gamma function and

A=







− d(2k)

dt(2k)σ
2(t0)

2(2k)!σ2(t0)







1/(2k)

, C =
1

2σ2(t0)
. (30)

Note that setting k = 1 is equivalent to the existence of d2

dt2σ
2(t0) and (28) is identical to (26). This

is because if k = 1,

P

¨

sup
t∈[0,1]

v̂(t)> a

«

≈ H(σ, 1)φ
�

a

σ2(t0)

�

(31)

=
1

2σ2(t0)

s

4σ2(t0)

− d2

dt2σ
2(t0)

p
π

exp
n

a
σ2(t0)

o

p
2π

, (32)

6Some more explicit calculations of Pg for the normal and exponential distributions are presented in Appendix A.
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and because it can be shown that ρ10(t0, t0) = 1/2 (see the proof of Theorem 1),

=
ρ10(t0, t0)
σ2(t0)







−2σ2(t0)
d2

dt2σ
2(t0)







1/2

exp

¨

−a2

2σ2(t0)

«

= Pg(a). (33)

Theorem 2 indicates some features that make Durbin’s Pg a good approximation. First, Durbin

conjectured that the point of maximal variance is the only point needed to compute his approximation,

because for boundaries that are high enough, the probability that a crossing will occur anywhere else

becomes negligible7. This is formally justifiable; see for example Piterbarg (1996, “Stage 2”, p. 21

or the corresponding part of Theorem 8.1, p. 120-121). Second, the assumption that the variance

function is twice differentiable is satisfied in a great number of parametric models, so this is not a

strong assumption.

3.4 The Gauss-Markov approximation P2

The limiting process v̂ is generally a non-Markovian, nonstationary Gaussian process. Because this limit

is non-Markovian, its increments may be related in complicated ways. Durbin’s final suggestion was

essentially to calculate boundary crossing probabilities as if this inconvenience were negligible. This

final approximation improves upon P1 and is the solution to a numerically evaluated integral equation.

A great deal of mathematical tractability is gained through this simplification, and the examples below

suggest that the results are quite accurate.

Let y be a mean-zero Gauss-Markov process (that is, a Gaussian process that also satisfies the

Markov property8) with covariance function ρ. Define9









β1(s, t)

β2(s, t)









=









ρ(s, s) ρ(s, t)

ρ(t, s) ρ(t, t)









−1







ρ01(s, t)

ρ10(t, t)









. (34)

Durbin (1985) showed that the exact density p2(t, a) of the first passage time for Gauss-Markov process

7Note that the maximal variance need not occur at a single point — the variance of the process used to test the Cauchy
distribution has two points of maximum, for example.

8That is, if a process y is defined on the filtration F , it satisfies the Markov property if E
�

yt |Fs
�

= E
�

yt |ys
�

for s ≤ t.
9This is similar to the linear estimate in the derivation of p1 in that it comes from consideration of a hypothetical regression

of y(r) on y(t) and y(s), s, t ≤ r.
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y is the solution to the integral equation

p2(t, a) = p1(t, a)− a

∫ t

0

�

β1(s, t) + β2(s, t)
�

f (t|s, a)p2(s, a)ds. (35)

Because (35) is a Volterra equation of the second kind, the solution p2 is unique. In (35), p1(t, a) is as

in (24) and f (t|s, a) is the value of the transition density of the process on the boundary a at time t

given that the process is on the boundary at time s ≤ t, in the case of a constant boundary, the transition

distribution is

F(t|s, a) = F(y(t)|y(s) = a) =N
�

ρ(s, t)
ρ(s, s)

a,ρ(t, t)−
ρ2(s, t)
ρ(s, s)

�

(36)

and the density is evaluated at a. Then the probability P
�

supt y(t)> a
	

is given by

P2(a) =

∫ 1

0

p2(t, a)dt (37)

Durbin (1985) showed that equation (35) holds exactly for Gauss-Markov processes, and he suggested

to use this relation as an approximation method for non-Markovian processes as well. That is, the

Gauss-Markov approximation to P
�

supt v̂(t)> a
	

is given by (37) where the covariance function of

v̂ is used to calculate (35) despite the fact that v̂ is not Markovian. This disregards the intractable

autocovariance structure of v̂ but also delivers reasonable results, as will be seen in Section 6.

3.4.1 Gauss-Markov processes

A mean-zero Gauss-Markov process with covariance function ρ has transition probabilities that can be

characterized as

(x , t)|(y, s)∼N
�

ρ(s, t)
ρ(s, s)

y,ρ(t, t)−
ρ2(s, t)
ρ(s, s)

�

. (38)

Mehr and McFadden (1965) derive several important results for these processes. These results stem

from the fact that the covariance functions of such processes must be triangular; that is, a Gaussian

process is also Markovian if and only if its covariance function ρ satisfies, for all 0≤ r ≤ s ≤ t

ρ(r, t) =
ρ(r, s)ρ(s, t)
ρ(s, s)

. (39)
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Because of this, there must exist (differentiable) functions η and ζ such that ρ(s, t) = η(s)ζ(t). Fur-

thermore, it can be shown (Doob, 1953; Mehr and McFadden, 1965) that all such processes are scaled,

time-changed Brownian motions: that is, if y is a Gauss-Markov process and W is standard Brownian

motion, then η/ζ is strictly increasing and we have the representation

y(t) = ζ(t)W
�

(η/ζ)(t)
�

. (40)

Using these results, Di Nardo et al. (2001) have shown that Durbin’s derivation is a special case of a

result on boundary crossing probabilities for diffusion processes found in Buonocore et al. (1987). A

mean-zero Gauss-Markov process is a diffusion process with a transition probability density function f

that satisfies the Fokker-Planck equation

∂

∂ t
f (x , t|y, s) =−

∂

∂ x
�

A1(x , t) f (x , t|y, s)
	

+
A2(t)

2

∂ 2

∂ x2 f (x , t|y, s) (41)

with lims→t f (x , t|y, s) = δ(x − y) (Di Nardo et al., 2001), and where

A1(x , t) = lim
s→t

∂

∂ t

ρ(s, t)
ρ(s, s)

y =
ρ01(t, t)
ρ(t, t)

y (42)

and

A2(t) = lim
s→t

∂

∂ t
ρ(t, t)−

ρ2(s, t)
ρ(s, s)

= ρ10(t, t)−ρ01(t, t) (43)

The function A2 in particular is intimately connected to Durbin’s approximation— see equation (36)

above and equation (4) of Durbin (1985). The function A1 is also strikingly similar to equation (23)

above, especially given the fact that for the parametric empirical process, ρ10(t, t)− ρ01(t, t) = 1 for

all t (see the proof of Theorem 1).

It may be noted that a Gauss-Markov process allows several integral equations involving the first

passage density to be derived; for example, one may start with the Chapman-Kolmogorov equations

that are so fundamental to Markov processes. In particular, one particularly simple formulation is the

following, which uses an argument analogous to Peskir (2002, Theorem 2.2)10:

10One might also start with a similar equation due to Fortet; see Durbin (1971, Section 2) for a derivation.
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Theorem 3. Let y : T → R, T ⊂ [0,∞) be a mean-zero Gauss-Markov process with a.s.-continuous

sample paths such that P
�

y0 = 0
	

= 1, and covariance function ρ(s, t). Let a > 0, and define

τa = inf{t > 0 : yt = a}.

Then the density p of τa satisfies the following integral equation:

Ψ





a
p

ρ(t, t)



=

∫ t

0

Ψ





a−m(s, t)
p

V (s, t)



 p(s, a)ds (44)

where

m(s, t) =
ρ(s, t)
ρ(s, s)

a and V (s, t) = ρ(t, t)−
ρ2(s, t)
ρ(s, s)

(45)

and Ψ= 1−Φ, where Φ denotes the standard normal cumulative distribution function.

The connection between the integral equations (44) and (35) is not as straightforward as it might

seem. Differentiating equation (44) with respect to t results in another integral equation that is re-

markably similar to equation (35). Despite the similarities, in general only a circuitous connection can

be made11— see Di Nardo et al. (2001) and Buonocore et al. (1987). The decision regarding which

integral equation to employ in computing the critical values presented in Section 5 was made on prac-

tical grounds: although equation (44) is slightly simpler to put into practice, Durbin’s equation (35)

was more stable in numerical experiments.

3.4.2 Computation of p2

Equation (35) is a nonseparable Volterra integral equation of the second kind and thus must be solved

numerically, but elementary methods can be used to calculate the solution. Following Press et al. (2001,

p. 786), one simple algorithm is a recursively computed numerical integral that steps forward from 0 to

1 on an equally spaced grid. The properties of ρ make this easy to accomplish: the kernel of the integral

equation — −a(β1(s, t) + β2(s, t)) f (t|s, a), for s ≤ t — has a limiting value of 0 whenever t or s are

0, 1, or equal to each other. Given an equally-spaced partition {t i = (i − 1)/m, i = 1, 2, · · ·m+ 1} (the

11Once again, this is because both equations can be related to the result of Fortet (cf. Durbin (1971).)
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value of m is chosen by the researcher,) the integration algorithm simplifies to the following recursive

rule: for i = 0,1 (recall t0 = 0),

p2(0, a) = 0, p2(t2, a) = p1(t2, a) (46)

and for i ≥ 3

p2(t i , a) = p1(t i , a) + a
1

m

i−1
∑

j=2

K(t j , t i)p2(t j , a) (47)

where K(·, ·) is the kernel of the integral equation. A partition of (0, 1) using m subintervals for numer-

ical integration results in accuracy of order O(1/m2) for any a; as it appeared that convergence was

slower than theory predicted in small experiments, the value of m was set at 10, 000 to produce the

results below. The weighting technique proposed by Di Nardo et al. (2001) did not appear to have an

effect on final critical value estimates, and so was not used in the calculations.

3.5 Discussion

The approximations discussed above are useful alternatives to simulation methods for sup-norm tests.

Although there is no clear theoretical way to quantify the relationship between Durbin’s approxima-

tions and the true boundary crossing probability for the limit of the parametric empirical process, the

arguments above are strong evidence in support of their accuracy. In fact, Theorem 2 is strong evidence

that all of the approximations perform quite well, since it applies to Pg , and Durbin’s original intent

was that this approximation be the least accurate of the three. In the simulation experiments examined

in Section 6, performance is quite competitive with other methods.

Furthermore, these methods are generalizable. It should be noted that the body of theory repre-

sented in Piterbarg (1996) is very general and applicable to a wide variety of Gaussian processes and

fields, and as such may serve as a fruitful point of departure for solutions to more general problems,

for example the extension of these techniques to test statistics that converge to Gaussian processes in

higher dimensions. Approximation P2 is also quite flexible — it may be applied to any sup-norm test

for which the empirical process has a Gaussian limit, as is for example the case with the empirical

characteristic function (Matsui and Takemura, 2005, Theorem 2.1). For goodness of fit tests based on
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regression residuals, very few modifications must be made — see van der Vaart and Wellner (2007).

On the other hand, addressing problems for which estimators are not efficient is more challenging. If θ̂

only satisfies assumption A2 above but is not asymptotically linear, the covariance function needs to be

derived on a case-by-case basis. The method presented in the next Section may be very useful in such

situations.

These approximations are attractive because the adjusted critical values are tied to the parametric

family being tested through computable features of the model. They require only that the researcher

can derive a few functions related to the model (as required in (16) or (17)) and plug the covari-

ance function and its derivatives into a relatively simple formula. In contrast, as will be seen below,

Khmaladze’s martingale transform can at times seem relatively complicated. In addition, as will be

seen in Section 6, tests that use adjusted critical values can perform at least as well as tests that rely on

simulation methods.

4 Khmaladze’s martingale transform

An alternative approach to the problem of testing a statistical model with estimated parameters was

suggested by Khmaladze (1981). He proposed a transformation of the empirical process that is not

affected asymptotically by the estimation of model parameters, thereby avoiding the problem that

statistics are not pivotal, a problem inherent in the use of the parametric empirical process. In the

one-sample setting, some interesting connections can be made between the martingale transform, the

parametric empirical process, and projection techniques.

Viewed as a real-valued random element of L2[0,1], Fn is a submartingale with respect to F Fn =

{F Fn
t }t≥0, the filtration of σ-algebras generated by Fn. Therefore the Doob-Meyer decomposition im-

plies a right-continuous increasing and predictable compensator K may be calculated that renders

Fn − K a martingale with respect to F Fn . The compensator K(x ,Fn,θ) is asymptotically equivalent

to the conditional expectation E
�

Fn(x)
�

�Fn(y), y ≤ x ,θ
�

.

The process

Ṽn(x) =
p

n
�

Fn(x)− K(x ,Fn, θ̂n)
�

(48)

is called the compensated empirical process, and Khmaladze (1981) showed that Ṽn converges weakly
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in L2[0, 1] to W ◦ F , a time changed Brownian motion. This renders statistics based on process (48)

asymptotically distribution-free.

The function g defined in equation (8) is intimately related to the score function of the parametric

model. The reason for this is that it can be shown that ġ, the derivative of g with respect to t, satisfies

the equation

ġ(t) =
∂

∂ t
g(t,θ) =

∂

∂ θ
log f (x ,θ)

�

�

�

x=F−1(t,θ)
(49)

implying that g is in effect the integrated score function for the model. In the sequel, g(t,θ) will

generally be shortened to g(t) when the parameters used in the transformation and the evaluation

of the function are identical. The compensator K(t,Fn, θ̂) is a projection of changes in the empirical

distribution function onto the score of the null model. With this in mind, define the p+ 1 dimensional

extended score function h and the (p+ 1)× (p+ 1)-dimensional function Γ by

h(t,θ) =









1

∂ g(t,θ)
∂ t









and Γ(t,θ) =

∫ 1

t

h(s,θ)h(s,θ)>ds. (50)

Finally, let the compensator K be defined as follows: for any t ∈ (0,1)

K(t,Fn,θ) =

∫ t

0

h(s,θ)>Γ−1(s,θ)

∫ 1

s

h(r,θ)dFn(r)ds. (51)

It is usually easier to perform computations using the following equivalent expression:

=

∫ 1

0

∫ t∧r

0

h(s,θ)>Γ−1(s,θ)ds h(r,θ)dFn(r). (52)

One may think of equation (51) as a functional analog to ŷ = xβ̂ familiar from usual regression

analysis, with h(t) playing the role of explanatory variable and the projection Γ−1(t)
∫ 1

t
h(s)dFn(s) as

β̂ . Note also the fact that Γ(0,θ) is simply an augmented version of the Fisher information matrix of

the model. Because of the similarities between h and the score, and Γ and the Fisher information, it

can be shown that the compensator also has a form that does not always depend on parameter values

when the null model is a member of special classes of parametric models (location-scale models, for

example); see Appendix B for more on this topic. For a more general interpretation of the martingale
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transform as a projection onto the score function of a parametric model, see Li (2009).

Although the compensator may be difficult to calculate analytically, it can be easily implemented

using a projection technique employing recursive least squares and the score function from the null

model. This ease of implementation is an attractive feature of the martingale transform method. The

details are addressed in Subsection 4.1. It should also be noted that this technique need not be limited

to tests of Kolmogorov-Smirnov type; after transformation of the empirical process, any functional can

be used to derive an asymptotically distribution-free test statistic, for example an L2 statistic like the

Cramér-von Mises statistic.

4.1 Computation of the compensator

Khmaladze’s compensator can be calculated using standard recursive least squares and numerical inte-

gration methods on a finite partition of [0,1] — see Bai (2003, Appendix B) for an alternate explana-

tion. Its accuracy depends only on the fineness of the partition used for integration.

Suppose we have a partition {t i} of the unit interval. First, least squares coefficients {β̂i}mi=1 are

generated at each t i by projecting the empirical distribution function onto the score of the model for

each {t j} j≥i . Then, projections are integrated from 0 to each t i to make a “prediction” of the score

function integrated up to the t th quantile of the null model.

Suppose we once again use an evenly spaced partition (with m points) of [0,1]. The score and

empirical distribution functions are evaluated at each point in the partition and then stacked into the

following sequence of matrices of size (m− i+ 2)× 2 and (m− i+ 2)× 1 respectively:

X i =





















Æ

1
m

Æ

1
m

ġ(tm+1)
Æ

1
m

Æ

1
m

ġ(tm)
...

...
Æ

1
m

Æ

1
m

ġ(t i)





















yi =





















p
m
�

Fn(tm+1)− Fn(tm)
�

p
m
�

Fn(tm)− Fn(tm−1)
�

...
p

m
�

Fn(t i)− Fn(t i−1)
�





















(53)
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Then, least squares coefficients for each t i are calculated:

β̂(t i) = (X
>
i X i)

−1X>i yi

=









1
m
(m− j+ 2) 1

m

∑m+1
j=i ġ(t j)

1
m

∑m+1
j=i ġ(t j)

1
m

∑m+1
j=i ġ2(t j)









−1







∑m+1
j=i [Fn(t j)− Fn(t j−1)]

∑m+1
j=i ġ(t j)[Fn(t j)− Fn(t j−1)]









. (54)

That is, for each t i , β̂(t i) is the projection of changes in {Fn(t j)} j≥i onto {h(t j)} j≥i . Given the form of

{X i}i and {yi}i it can be seen that rather than generating m− p+ 1 very similar X and y matrices, an

efficient way to calculate the sequence {β̂(t i)}i is via recursive least squares from tm−p+1 to t1. Then

for any t i the compensator K̂(t i) is obtained by integrating numerically:

K̂(t i) =
1

m

i
∑

j=1

h>(t j)β̂(t j). (55)

Here it can be seen why Bai (2003) called the martingale transform method a “continuous time de-

trending operation” using the score function of the model. The above algorithm is simply a discretized

approximation to the operator K . As such, each estimate K̂ is subject to some approximation error that

shrinks as the size of the partition (m) increases.

4.2 Comparison with Wooldridge (1990)

Wooldridge (1990), extending the work of Davidson and MacKinnon (1985) in the context of robusti-

fying regression specification tests, proposed an orthogonal projection that achieves the same goal as

the martingale transform — it accounts for the effect of estimation and leaves statistics asymptotically

distribution-free. Khmaladze’s martingale transform bears a good deal of similarity to Wooldridge’s

proposal. However, these proposals are fundamentally different with regard to the transformation that

is made to the data. Here we adapt Wooldridge’s test statistics to the one-sample case to facilitate

comparison with Khmaladze’s transformation. As the analysis below shows, Wooldridge’s idea applies

to finite-dimensional features of a density, while Khmaladze’s applies to the shape of the entire density

function.

Suppose for a given x ∈ X , we have a hypothesized vector of conditional moment restrictions
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φ ∈ RL satisfying

E
�

φ(x , X i ,θ)
�

= 0, ∀i, ∀x ∈ X , for some θ0 ∈Θ (56)

and let {Λ(x , X i ,θ)}ni=1 be some “misspecification indicators” used to robustify the test statistic against

model misspecification. Many test statistics can be defined by

T̂n(x , θ̂) =
1
p

n

n
∑

i=1

Λ(x , X i , θ̂)φ(x , X i , θ̂) (57)

or as some functional of T̂n. Define

Φ(x , X i ,θ) = E
�

∇θφ(x , X i ,θ)
�

, i = 1,2, . . . , n (58)

Wooldridge (1990) noted that by using a mean-value expansion, under some regularity conditions,

T̂n(x , θ̂) =
1
p

n

n
∑

i=1

Λ(x , X i , θ̂)φ(x , X i , θ̂) (59)

=
1
p

n

n
∑

i=1

Λ(x , X i ,θ0)φ(x , X i ,θ0) +
p

n
�

θ̂ − θ0

�> 1

n

n
∑

i=1

Λ(x , X i ,θ0)∇θφ(x , X i ,θ0) + oP(1)

(60)

uniformly in x . This statistic is similar to the parametric empirical process in that its distribution is

affected by θ̂ and the distribution of
p

n(θ̂ − θ0). Wooldridge showed that by using an orthogonal

projection of Λ on Φ, it is possible to define statistics that do not depend on these unknowns:

T̃n(x , θ̂) =
1
p

n

n
∑

i=1

(Λ(x , X i , θ̂)−Φ>(x , X i , θ̂)β̂(θ̂))
>φ(x , X i , θ̂) (61)

=
1
p

n

n
∑

i=1

(Λ(x , X i ,θ0)−Φ>(x , X i ,θ0)β̂(θ0))
>φ(x , X i ,θ0) + oP(1), (62)

where

β̂(θ) = β̂(x , X ,θ) =

 

n
∑

i=1

Φ(x , X i ,θ)Φ
>(x , X i ,θ)

!−1 n
∑

i=1

Φ(x , X i ,θ)Λ(x , X i ,θ). (63)

Therefore it is possible to use T̃n with an estimator that satisfies
p

n(θ̂ − θ0) = OP(1), and Wooldridge

shows that a quadratic form using T̃n is equivalent to a Lagrange multiplier test that converges in distri-

bution to a χ2 distribution with degrees of freedom equal to the dimension of Λi . That is, Wooldridge’s

22



modified test statistic uses an orthogonal projection to remove the effect of parameter estimation.

The difference between this approach and Khmaladze’s can be illustrated by adapting it to test the

hypothesis that the data is described by the distribution function F ∈ F . Start by transforming the

problem to the unit interval, and define

φ(t, X i ,θ) = I(F(X i ,θ)≤ t)− t (64)

which has zero expectation for all i under the null hypothesis. For each observation Φ is

Φ(x ,θ) =∇θ F(x ,θ)|x=F−1(t,θ0) = g(t,θ). (65)

Notably, Φ does not depend on the observed data. Letting λ(t, X i ,θ) = Λ(F−1(t,θ0), X i ,θ) results in

T̂n(t, θ̂) =
1
p

n

n
∑

i=1

λ(t, X i , θ̂)
�

I(F(X i , θ̂)≤ t)− t
�

(66)

a weighted parametric empirical process evaluated at t (cf. Koul (2002) for conditions under which

this would also converge weakly to a limiting function that is continuous in t). By letting λ ≡ 1 one

obtains T̂n(t, θ̂) = v̂n(t).

Consider now to the specialization of (61) to this setting. If g(t,θ)g>(t,θ) were invertible, we

could rewrite T̃n defined in (61) as

T̃n(t, θ̂) =
1
p

n

n
∑

i=1

 

λ(t, X i , θ̂)− g>(t, θ̂)
�

g(t, θ̂)g>(t, θ̂)
�−1

g(t, θ̂)
1

n

n
∑

i=1

λ(t, X i , θ̂)

!

�

I(X i ≤ t)− F(t, θ̂)
�

.

(67)

Lemma 1 shows that it is indeed possible to define T̃n in this way, although the value of g(t, θ̂) is

irrelevant. A more precise characterization is given in Lemma 1.

Lemma 1. T̃n(t, θ̂) is well-defined when φ and Φ are defined as in (64) and (65), and

T̃n(t, θ̂) =
1
p

n

n
∑

i=1

�

λ(t, X i , θ̂)−λ(t, θ̂)
��

I(F(X i , θ̂)≤ t)− t
�

(68)
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where λ(t, θ̂) = 1
n

∑n
i=1λ(t, X i , θ̂). In particular,

g>(t, θ̂)β̂(θ̂) = λ(t, θ̂), (69)

where β̂ is defined in (63).

This proposal is different from that of Khmaladze (1981) because here β̂(θ̂) is an orthogonal projec-

tion onto the space spanned by g(t, θ̂)— that is, the function evaluated at t. Khmaladze’s compensator

is a projection into the space spanned by the function g. Statistics derived by using Wooldridge’s projec-

tion in this way are uninformative because the null hypothesis is functional in nature and the value of

the function evaluated at a single point is not informative. The statistic T̃n(t, θ̂) may indeed have some

interesting properties, but it is beyond the scope of this paper to extend this test statistic to a process

in t and to examine conditions under which supt T̃n(t, θ̂) has a tractable limiting distribution (cf. Koul

(2002, Section 6.6.2) for some results that might be applied here); Lemma 1 reveals that, as defined

here, g plays no part in T̃n and T̃n is not generally a distribution-free test statistic.

5 Examples

One-sample tests of exponentiality and normality with estimated parameters are simple examples with

which one can compare the approaches proposed by Durbin and Khmaladze. For tests of exponen-

tiality there is one parameter12, while for tests of normality there are two parameters and therefore a

greater variety of boundary crossing probabilities to compute. The martingale transform is illustrated

analytically for the exponential case, a result first presented in Haywood and Khmaladze (2008) and

developed here under the time transformation t = F(x ,θ0). Khmaladze and Koul (2004) and Khmal-

adze and Koul (2009) discuss some features of the compensator for the null hypothesis of normality,

although it is tedious to express it analytically. Some other examples may be found in Koul and Sakha-

nenko (2005).

12Martynov (2009) shows that the calculation of the parametric empirical process for the Weibull model is only marginally
more complicated than for the exponential model, but an analytic expression for the compensator is difficult to derive.
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5.1 The exponential distribution

The exponential model has convenient distribution and quantile functions. The hypothesis of exponen-

tiality is

H0 : F(x ,λ) = 1− e−λx , x ∈ [0,∞), λ ∈ (0,∞). (70)

The function g for the exponential model is

g(s,λ) =
−1

λ0
(1− s) log(1− s)e

λ
λ0 . (71)

A maximum likelihood estimate λ̂n = x̄−1 exists, and therefore v̂ for a hypothesis of exponentiality is a

mean-zero Gaussian process with covariance function

ρ(s, t) = s ∧ t − st − (1− s)(1− t) log(1− s) log(1− t). (72)

which clearly does not depend on any parameter values (this distribution is a member of the scale-

shape class discussed in Appendix B.) For computation of Pg the point of maximal variance must be

solved numerically as the solution to

1− 2t0+ 2(1− t0) log(1− t0)
�

1+ log(1− t0)
�

= 0. (73)

The methods of Section 3 were applied using (72) to produce the approximate critical values in

Table 1 for testing the hypothesis of exponentiality. The corresponding standard Kolmogorov-Smirnov

critical values are included in the last column to give an impression of the magnitude of the difference

between them and the distributionally dependent critical values. Note that since the third term in

equation (17) is positive definite, the covariance function of the parametric empirical process is smaller

than that of the Brownian bridge for all t, and therefore critical values for the Kolmogorov-Smirnov

test using the parametric empirical process should always be smaller than for the standard test (van der

Vaart and Wellner, 1996, p. 441).

Both Pg and P2 adjust the first approximation P1 downward slightly. Although it is a global approx-

imation, the values of Pg are extremely close to those produced using P1 and P2: for purposes of quick

approximation, Pg offers reasonable precision with very little computation.
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Table 1: Approximate critical values for the composite hypothesis of exponentiality and correspond-
ing classical Kolmogorov-Smirnov critical values. These values are invariant to the value of the scale
parameter.

Significance Level P1 Pg P2 K-S
10% 0.89401 0.88054 0.87726 1.07298
5% 1.00063 0.99105 0.98983 1.22387
2.5% 1.09766 1.09041 1.09013 1.35810
1% 1.21464 1.20930 1.20955 1.51743

5.1.1 The compensator for the exponential case

Khmaladze’s compensator for the exponential distribution is presented here on t ∈ [0, 1]. For the

exponential distribution, straightforward computation reveals that

h(t,λ) =









1

1
λ
(1+ log(1− t))









(74)

and

Γ(t,λ) =









1− t 1
λ
(1− t) log(1− t)

1
λ
(1− t) log(1− t) 1

λ2 (1− t)(1+ log2(1− t))









. (75)

From here one can compute the compensator for any t. Let {ε̂i}ni=1 = {F(X i , λ̂)}ni=1 for some

appropriate estimator λ̂. Then

K(t,Fn, λ̂) =

∫ t

0

1

2
log2(1− ε̂)− 2 log(1− ε̂)− log2(1− ε̂)dFn(ε̂)

+

∫ 1

t

1

2
log2(1− t)− 2 log(1− t)− log(1− ε̂) log(1− t)dFn(ε̂), (76)

or alternatively

K(t,Fn, λ̂) =
1

n

∑

i:ε̂i≤t

�−1

2
log2(1− ε̂i)− 2 log(1− ε̂i)

�

+
�

1

2
log2(1− t)− 2 log(1− t)

�

�

1− Fn(t)
�

−
1

n
log(1− t)

∑

i:ε̂i>t

log(1− ε̂i), (77)
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both of which depend only on the parameter estimate through {ε̂i}i . Note that without making the

transformation t = F(x ,θ) Haywood and Khmaladze (2008) derive this compensator, which is

K̃(x ,Fn, λ̂) =
λ̂

n

∑

i:X i≤x

�

2X i −
λ̂

2
X 2

i

�

+

�

2λ̂x +
λ̂2

2
x2

�

(1− Fn(x))−
λ̂2

n
x
∑

i:X i>x

X i

(78)

but from this expression it is not apparent that the form of the compensator is independent of the value

of the estimate λ̂.

5.2 The normal distribution

The normal model is also of interest. The hypothesis of normality is

H0 : F(x ,θ) =

∫ x

−∞

e
−1

2σ2 (y−µ)
2

p

2πσ2
dy =

∫

x−µ
σ

−∞
φ(z)dz, x ∈ R, (79)

where θ = (µ,σ) ∈ R× (0,∞) and φ(z) = exp{−z2/2}p
2π

. Maximum likelihood estimators exist for the

parameters of the model, so the covariance function generally takes the form of (17).

Letting Φ be the distribution function of the standard normal distribution, the location-scale invari-

ance of the normal model implies that F−1(s,θ) = µ+σΦ−1(s), and the function g for the location-

and scale-unknown case is equal to

g(s,θ) =









∂
∂ µ

∫

x−µ
σ

−∞ φ(z)dz

∂
∂ σ

∫

x−µ
σ

−∞ φ(z)dz









x=µ+σΦ−1(s)

=
−1

σ









φ(Φ−1(s))

Φ−1(s)φ(Φ−1(s))









. (80)

Since the normal model is in the location-scale class, specific parameter values can be ignored and

standard normal quantiles can be used (see Appendix B.) Using (17), one finds that v̂ has covariance

function

ρµσ(s, t) = s ∧ t − st −φ(Φ−1(s))φ(Φ−1(t))
�

1+
1

2
Φ−1(s)Φ−1(t)

�

. (81)

The function ρµσ(t, t) is maximized at t0 =
1
2
, and the global approximation in this case is Pg(a) =

Æ

2π
π−2

exp{−2πa2/(π− 2)}.
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Table 2: Approximate critical values for the composite hypothesis of normality. These values are in-
variant to parameter values, although they change according to the combination of parameters left
unspecified in the null hypothesis. For the location-unspecified case, the values of Pg are computed
using the methods of Fatalov (1992, 1993); see Appendix A for more details.

Significance Level P1 Pg P2

Both parameters unspecified
10% 0.76690 0.75716 0.74979
5% 0.84364 0.83620 0.83274
2.5% 0.91429 0.90839 0.90673
1% 1.00036 0.99581 0.99526

Mean unspecified
10% 0.82311 0.82541 0.81305
5% 0.90099 0.90299 0.89410
2.5% 0.97198 0.97375 0.96690
1% 1.05786 1.05940 1.05421

Variance unspecified
10% 1.04103 1.02466 1.03443
5% 1.19298 1.18174 1.18906
2.5% 1.32857 1.32026 1.32604
1% 1.48967 1.48365 1.48810

The diagonal nature of the information matrix for the normal model makes the third term of the

covariance function additive in the two parameters. Therefore the covariance functions for the other

two possible cases are immediate. For the location-unknown case we have

ρµ(s, t) = s ∧ t − st −φ(Φ−1(s))φ(Φ−1(t)) (82)

The function ρµ(t, t) is maximized at t0 =
1
2
; however, Pg does not exist in this case, because the

second derivative of ρ(t, t) evaluated at t0 is equal to zero. We can, however, use Theorem 2 to find

that Pg =
Γ(1/4)
π−2

4
Æ

3π
2

p
a exp{−2πa2/(π− 2)} (cf. Appendix A).

Similarly, the covariance function in the scale-unspecified case is

ρσ(s, t) = s ∧ t − st −
1

2
Φ−1(s)Φ−1(t)φ(Φ−1(s))φ(Φ−1(t)), (83)

ρσ(t, t) is maximized at t0 =
1
2

and Pg(a) = (2/3)1/2 exp{−2a2}. Note that there is a small typograph-

ical error in this expression in Durbin (1985, p. 117); a sketch of the derivations required appears in

Appendix A.

Approximate critical values are presented in Table 2. The values are all quite close to one another;
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as in the exponential case, the values of Pg and P2 are uniformly lower than those of P1. Due to the

fact that the normal distribution is a location-scale class, the critical values tabulated in Table 2 are

invariant to the true values of the parameters µ and σ.

5.3 Regression residual processes

Suppose that the distribution of yi ∈ R conditional on X i ∈ Rp may be specified as

yi = X>i β +σεi , εi ∼ F0, i = 1,2, . . . n, (84)

where εi are iid, mean-zero and independent of {X i}. The linear form of the conditional mean can

be relaxed; see Khmaladze and Koul (2009). The null hypothesis is that the distribution function of

yi conditional on X i is a member of a parametric model — for example, the normal model. This is

equivalent to the hypothesis that εi are distributed according to a location-scale model, because the

model implies that the distribution function for each error εi satisfies

F(e,θ |X i) = F0

�

e− X>i β

σ

�

, θ = (β ,σ) ∈ Rp ×R+. (85)

Define the parametric empirical process of regression residuals (ε̂i = (yi − X>i β̂)/σ̂) by

v̂n(t) :=
1
p

n

n
∑

i=1

�

I(F0(ε̂i)≤ t)− t
�

, (86)

and let vn be the empirical process of the true errors — that is, analogously to v̂n but with null value

θ0. The function g : R→ Rp+1 must be defined conditional on X i , and is analogous to (8): let

g(t|X i) =∇θ F(F−1(t|X i ,θ)|X i ,θ) =
−1

σ









X i f0(F
−1
0 (t))

F−1
0 (t) f0(F

−1
0 (t))









. (87)

Koul (2002, Theorem 6.4.1) implies that v̂n satisfies the following asymptotic linearity characteri-

zation, analogous to (12):

sup
t∈[0,1]

�

�

�

�

�

v̂n(t)− vn(t) +
p

n(θ̂ − θ0)
> 1

n

n
∑

i=1

g(t,θ0)

�

�

�

�

�

= oP(1). (88)
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Assuming an asymptotically efficient θ̂ exists, the distribution of the supremum norm test statistic

can be written down more explicitly. Using (87), it can be verified that the covariance function of the

limiting process v̂ is

E [v̂(s)v̂(t)|X ] = s ∧ t − st −
1

σ2 f0(F
−1
0 (s)) f0(F

−1
0 (t))

�

E
�

X>
�

F−1
0 (s)

�

I−1(θ0)









E [X ]

F−1
0 (t)









. (89)

For the purpose of testing normality note that the information matrix for the regression model with

normal errors is

I(θ) =
1

σ2









Q 0p×1

01×p
1
2









(90)

where Q = plim 1
n
X>X . Along with (87) specialized to the normal distribution, it can be verified that

equation (89) becomes

E [v̂(s)v̂(t)|X ] = s ∧ t − st −φ(Φ−1(s))φ(Φ−1(t))P −
1

2
φ(Φ−1(s))φ(Φ−1(t))Φ−1(s)Φ−1(t), (91)

where

P = plim
1

n
1>n X (X>X )−1X>1n (92)

summarizes the effect that the design matrix X has on the limiting covariance function. When the

design includes an intercept term, 1
n
1>n PX 1n =

1
n
1>n 1n = 1 and the process of regression residuals has

the same asymptotic distribution as the one-sample process, unaffected by the distribution of X .

6 Simulation experiments

6.1 The exponential distribution

Table 3 presents the results of a small simulation experiment using the D− statistic for testing the null

hypothesis of exponentiality against one-sided alternatives. Both the Gauss-Markov approximation and

the martingale transform were included. Because there is an analytic form for the compensator, the

numerical approximation calculated as in Subsection 4.1 can be compared to the exact version. A

partition of m = 1.5n points in the interval was used for the recursive least squares algorithm for the
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compensator. This is meant to reflect the fact that in some cases (for example, quantile regression

processes,) the total number of points in the partition has an upper limit.

Table 3: Sizes (in percent) of a one-sided sup-norm test (D−) using adjusted critical values or a mar-
tingale transform for a test of exponentiality. Nominal sizes appear in the column header. 50,000
repetitions.

sample size 10 5 2.5 1
50

P2 10.41 4.92 2.36 0.92
analytic transform 11.03 4.53 1.72 0.46
RLS transform 8.77 3.60 1.42 0.37
Kolmogorov-Smirnov 2.70 0.81 0.23 0.05

100
P2 10.52 5.15 2.48 0.95
analytic transform 10.54 4.56 1.87 0.50
RLS transform 9.26 4.02 1.66 0.48
Kolmogorov-Smirnov 2.84 0.83 0.26 0.06

200
P2 10.36 5.04 2.44 0.97
analytic transform 10.12 4.64 1.96 0.57
RLS transform 9.42 4.38 1.87 0.57
Kolmogorov-Smirnov 2.77 0.87 0.26 0.05

As theory predicts, naively applied classical Kolmogorov-Smirnov critical values result in tests that

have a size much lower than the nominal size. The exact compensator leads to inferences that improve

as the sample size increases, as is to be expected, although the improvement is smaller at lower levels

(cf. Table 1 of Haywood and Khmaladze (2008)). At the 10% and 5% levels, the process using the exact

compensator is clearly closer to the nominal level than its discretized counterpart, but this relationship

reverses at the 2.5% and 1% levels. The Gauss-Markov approximation results in tests that are reason-

ably close to their nominal size, although they appear to do slightly better for smaller sample sizes and

for smaller levels. The compensator computed using recursive least squares (“RLS transform” in Ta-

ble 3,) typically the only feasible compensated process, performs roughly as well as the Gauss-Markov

approximation in most cases.

The power of these tests has been addressed in a few papers, notably Aki (1986), Haywood and

Khmaladze (2008) and Koul and Sakhanenko (2005), with some results on power for the martingale

transformation technique. Another experiment was conducted using smooth local alternatives to the

null hypothesis of exponentiality. Alternatives were constructed in one of two ways. First, local alter-
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native mixture densities were generated using the following formula:

fmix(x , n) =
�

1−
c
p

n

�

fex p(x) +
c
p

n
fal t(x) (93)

where fex p is the exponential density and fal t is a different density. These alternative densities were

arbitrarily chosen to be lognormal(0, 1/2), or uniform [0,4], with the parameters and constants c

chosen so as to achieve nontrivial (i.e., not 0 or 100%) power for all the tests. Two other convergent

alternative models that nest the exponential were considered: the gamma and Weibull models. These

alternatives were set with scale parameters equal to 1 and shape parameters equal to 1+ c/
p

n. The

tests considered were Durbin’s P2 and Pg approximations, compensated empirical processes calculated

both analytically and using recursive least squares, and a bootstrap test.

The bootstrap was conducted following Stute et al. (1993). That is, each sample was used to

generate a bootstrapped critical value by estimating λ̂ in the given sample and then producing 200

random exponential(λ̂) samples with the same sample size as the original. Stute et al. (1993) show

that a bootstrapped empirical process converges in distribution to the parametric empirical process,

implying that the supremum statistic also converges in distribution to the distribution of the supremum

of the parametric empirical process.

The results of the power experiment appear in Table 4. The first row simply repeats the size of the

tests, and the remaining rows report the empirical power from 50,000 simulated samples for the local

alternatives described above. It can be seen that the classical Kolmogorov-Smirnov critical values result

in tests that are uniformly less powerful than tests using adjusted values, which is to be expected since

the adjusted values are always lower than the unadjusted ones. The bootstrap technique and Durbin’s

approximations are strikingly similar to one another, which is to be expected because in this simple

setting, the bootstrap is effectively a simulation of the distribution described by the approximations. It

is also of interest to note that no one method has uniformly better performance than all the others. For

example, tests based on the compensated process do extremely well against the uniform alternative.

On the other hand, they do not seem to do quite as well as other tests under lognormal and gamma

alternatives. Evidently these tests have differential performance against alternatives from different

parts of the space of alternatives.
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Table 4: Empirical size and power for the local alternatives described in the text. All tests are intended
to have a size of 5%. 50,000 repetitions.

sample size P2 Pg analytic RLS bootstrap K-S
transform transform

null model
50 5.0 4.9 4.4 3.5 5.5 0.8
100 5.0 4.9 4.6 4.1 5.4 0.8
200 5.1 5.0 4.7 4.3 5.4 0.8

uniform mixture
50 83 83 99 99 84 49
100 71 71 98 97 71 32
200 57 57 97 96 58 18

lognormal mixture
50 40 40 34 31 42 16
100 40 40 33 32 41 16
200 40 40 33 32 41 16

gamma alternative
50 56 56 53 49 57 24
100 62 62 59 57 63 30
200 67 67 63 62 68 36

weibull alternative
50 51 51 55 51 53 21
100 55 55 59 57 56 25
200 59 58 63 61 59 28

6.2 The normal distribution

We illustrate the performance of tests for normality using the regression residual process. Consider the

simple model

yi = X>i β +σεi , (94)

for all i, where {εi} are independent of {X i}, and suppose H0 : εi ∼ N (0,1) for all i. Two natural

test statistics that arise as generalizations of the one-sample statistics used above are the supremum

statistic D̂n = supt∈[0,1]

�

�v̂n(t)
�

�, where v̂n is defined in (88), and the statistic D̃n = supt

�

�ṽn(t)
�

� created

by applying the martingale transformation (assuming normality) to the regression residual process. For

the experiment shown in Table 5, a grid of 3n points on the unit interval was used, to increase the

precision of the compensator.

The conditional Kolmogorov (CK) test proposed by Andrews (1997) can be specialized to this situ-

ation and used to test this hypothesis. That test statistic is defined as

CKn =max
j≤n

�

�

�

�

�

1
p

n

n
∑

i=1

�

I(yi ≤ y j)− F(y j|X i , θ̂)
�

I(X i ≤ X j)

�

�

�

�

�

. (95)
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This test statistic is calculated using only the points in the sample because of the computational burden

that would be imposed by maximization over the entire sample space. Andrews proposed the following

bootstrap procedure for inference: fix the covariates and create b bootstrap samples of size n by resam-

pling (n times) from y to create y∗ and constructing the sample {y∗i , X i}ni=1. Following this suggestion,

we repeated this 299 times to find a bootstrap distribution of CKn. Note that the regression residual

process (86) is very similar to the process appearing in Andrews’ CK statistic — because the model

asserts that yi|X i is a member of a location-scale model for all i, F(yi|X i ,θ) = F0((yi − X>i β)/σ), the

only difference is the addition of the indicators I(X j ≤ X i) in the definition of the CK statistic.

In order to produce the results in Table 5, regression models were generated with correct specifica-

tion of the conditional expectation, but with error terms following different distributions. Specifically,

all models were linear models

yi = 1+ x i + .5εi , (96)

where x i ∼ N (0,1) for all i and εi following another “local mixture” distribution with the following

density:

fmix(e) =
�

1−
c
p

n

�

φ(e) +
c
p

n
tν(e) (97)

where φ is the standard normal density, tν is the density associated with the (Student’s) t-distribution,

and where ν , the degrees of freedom associated with the t distribution in the mixture, were chosen

to be infinite or one of ν = 10,4, and 2. Naturally, the infinite value for ν is chosen to examine the

performance of the tests under the null hypothesis. The value c = 6 was chosen so as to avoid trivial

powers.

Table 5 shows the results of a simulation experiment comparing Andrews’ conditional Kolmogorov

test, a test utilizing Durbin’s Pg approximation, and the test based on a transformed process under the

null hypothesis of normality and under the local t deviations from normality. The size of Andrews’

bootstrap-based test is quite close to the intended 5%, better than the other two methods, especially

in the smallest sample size, although for similar sample sizes this test had a tendency to overreject the

null hypothesis in Andrews’ Table 1 (p. 1111). It should be noted however, that the conditional model

discussed in the simulation results of Andrews (1997) is different and more complex than the model

considered here — in this paper only univariate response variables have been examined. Andrews’

method can easily be extended to conditional models with a multivariate response variable (as in

34



Table 5: Empirical size and power for locally t-distributed alternatives described in the text. All tests
are intended to have a size of 5%. 25,000 repetitions.

sample size Andrews’ Pg RLS
CK transform

null model
50 4.4 3.7 1.8
100 4.5 4.1 3.1
200 4.8 4.6 3.6

t10 mixture
50 8.0 6.7 4.3
100 9.6 7.0 8.1
200 11.1 7.0 10.7

t4 mixture
50 13.8 23.7 13.4
100 19.4 30.3 26.4
200 25.6 36.5 38.4

t2 mixture
50 16.3 68.8 42.1
100 24.3 85.0 68.0
200 34.6 93.1 85.9

the example of a trivariate logit model) because inference is carried out using a parametric bootstrap

technique. It is more difficult to apply the analytic techniques considered here to such settings.

For small departures from normality (represented by the t10 mixture density), the bootstrap proce-

dure also appears to have somewhat better power than the other two methods. However, against the

heavier-tailed alternatives — those mixtures using t4 and t2 distributions — inference using adjusted

critical values appears to be the most powerful. Inference based on the transformed empirical process

appears to be as powerful as that using Durbin-style adjustments, but this only becomes apparent when

the sample size is large. Tests using the transformed process were also rather under-sized, especially

for small samples. The average time used to conduct each test was different between the methods and

much higher for Andrews’ test — for example, for samples of size 200, the average time to compute

Andrews’ statistic was 6.7 seconds, while the compensated empirical process statistic took .03 seconds

and the parametric empirical process statistic took .006 seconds on average. These times are trivial for

researchers who only wish to conduct the test once for an analysis; on the other hand, the relative sim-

plicity of the Durbin-style adjustments may sometimes be an argument in their favor. The unmodified

parametric empirical process can be used, and (assuming the hypothesized model is simple enough) the

covariance function can be quickly calculated and used in a formula like that in Theorem 1 to conduct

inference.
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7 Conclusion

Durbin (1985) proposed several very accurate approximations to the boundary crossing probability for

a class of Gaussian processes, of which the standard parametric empirical process is a leading exam-

ple. In this paper I show that it is simple to conduct sup-norm inference for empirical processes based

on Durbin’s approximations, and that its performance in finite samples is competitive with two other

empirical-process-based inferential methods — the martingale transformation proposed by Khmaladze

(1981) and parametric bootstrap techniques. The score function of the null parametric model is the

common thread that connects Khmaladze’s transformation to Durbin’s approximations. Evidence from

simulation experiments suggests that Durbin’s approximations result in tests that have a size com-

parable to tests based on the compensated empirical process. Simulation suggests that Durbin-style

adjustments may offer a power advantage over the other inferential methods.

A Pg and large deviation approximations

In order to clarify equation (26), Durbin’s global approximation, some further details are presented

for the specific cases mentioned in the examples. For the exponential distribution, t0 must satisfy the

following equation:

1− 2t0+ 2(1− t0)
�

log(1− t0) + log2(1− t0)
�

= 0. (98)

Using a numerical root-finding procedure, one finds that the value of t0 is approximately 0.3398 for

the exponential case. The rest of the calculations for the exponential case must be done numerically

because of the lack of a convenient value of t0. However, it is possible to calculate Pg analytically for

the two normal cases mentioned above. Note that for all normal distribution cases, t0 = 0.

For the two computable normal cases (i.e., when both parameters or only the scale parameter are

unspecified,) the second derivatives of each ρ(t, t) are respectively

d2ρµσ(t, t)

dt2 =−1+
�

1+φ(ξ(t))
�

ξ2(t)− ξ4(t) (99)
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and

d2ρσ(t, t)
dt2 =−3+ 4ξ2(t)− ξ4(t), (100)

where φ is the standard normal density function and ξ is the standard normal quantile function. When

evaluated at t0 = 1/2 we have −1 and −3 respectively.

Evaluating the above functions and the covariance functions together at the maximum t0 = 1/2

(recall ρ1(t0, t0) = 1/2 for all models) and putting everything together as in equation (26), we have

Pg(a) =
1/2

1
4
− 1

2π

s

−2
�

1
4
− 1

2π

�

−1
exp







−a2

2
�

1
4
− 1

2π

�







=

r

2π

π− 2
e
−2π
π−2

a2
(101)

for the model with both location and scale unspecified, and

Pg(a) =
1/2

1/4

r

−2/4

−3
exp

¨

−a2

2/4

«

=
p

2/3e−2a2
(102)

for the scale-unspecified case.

A.1 Large deviation approximations

The constants used in Fatalov’s formulation of the boundary crossing probability for tests of normality,

as presented in Theorem 1, are

(µ̂, σ̂) : σ2(t0) =
π− 2

4π
A=

Ç

π

π− 2
C =

2π

π− 2
k = 1 (103)

(µ, σ̂) : σ2(t0) = 1/4 A=
p

3 C = 2 k = 1 (104)

(µ̂,σ) : σ2(t0) =
π− 2

4π
A= 4

È

2π2

3(π− 2)
C =

2π

π− 2
k = 2 (105)
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Note the value of A is different from what is printed in Piterbarg (1996) for two of three cases. Plugging

these values into equation (28) results in

P

¨

sup
t∈[0,1]

v̂(t)> a
�

�

�µ̂, σ̂

«

=

r

2π

π− 2
e
−2π
π−2

a2
(106)

P

¨

sup
t∈[0,1]

v̂(t)> a
�

�

�µ, σ̂

«

=
p

2/3 e−2a2
(107)

P

¨

sup
t∈[0,1]

v̂(t)> a
�

�

�µ̂,σ

«

=
Γ(1/4)
π− 2

4

r

3π

2

p
a e

−2π
π−2

a2
(108)

B Location-scale and scale-shape models

Two classes of commonly used parametric models are represented in the examples. When the hypothe-

sized distribution is a member of one of these classes, the parametric empirical process does not depend

on specific parameter values. The first of these classes is the well-known class of location-scale models.

Models in this class have distribution functions that take the form

F(x ,θ) = F0

�

x − θ1

θ2

�

; x ∈ X ⊆ R, θ ∈ R× (0,∞) (109)

for a fixed function F0. Process-based goodness-of-fit tests for location models have analogs based on

regression residuals. The earliest example of such tests is Loynes (1980). For a more recent treatment,

see Koul (2002, Chapter 6), Koul (2006) or Khmaladze and Koul (2004).

The second class may be called scale-shape models: these models have distribution functions of the

form

F(x ,θ) = F0

�

�

x

θ1

�θ2
�

; x ∈ X ⊆ [0,∞), θ ∈ (0,∞)× (0,∞). (110)

Scale-shape models include the Weibull, Pareto and exponential models. These models have a natural

connection to duration models — see, for example Hong and Liu (2007), Hong and Liu (2009) and the

references cited therein. This invariance for scale-shape models was noted, with some examples, by

Martynov (2009).

We assume that efficient estimates exist for the parameters, so that the covariance function of

v̂ takes the form described in (17). For these families, the assumptions that maximum likelihood

estimators exist and the Fisher information matrix is finite are equivalent to the condition that F0
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has an absolutely continuous density f0 that is positive on its support and has a derivative ḟ0 almost

everywhere, and such that

sup
x∈R
|x | f0(x)<∞ and

∫

( ḟ0/ f0))
2(x) + (1+ x( ḟ0/ f0)(x))

2dF0(x)<∞ (111)

for location-scale families (cf. Koul (2006, eq. (1.6))) or

sup
x∈R+

x log x f0(x)<∞ and

∫

(1+ x( ḟ0/ f0)(x))
2+ (1+ log x + x log x( ḟ0/ f0)(x))

2dF0(x) (112)

for scale-shape families13. These two classes of parametric families have the attractive feature that

their score functions may be separated into two parts: one that contains parameter values and one that

contains only functions that depend on the model. The location-scale case is very well-known (e.g.

Shorack and Wellner (1986, Section 5.5),) the scale-shape case was noted as a general phenomenon

by Martynov (2009), and both were noted as special cases in Kulinskaya (1995).

Members of the location-scale class have the following property:

g(t) =∇θ F(x ,θ)
�

�

x=F−1(t,θ) =
−1

θ2









f0(F
−1
0 (t))

F−1
0 (t) f0(F

−1
0 (t))









(113)

and the score function inherits this separability, since the derivative of g with respect to t is

ġ(t) =∇θ log f (x ,θ)
�

�

x=F−1(t,θ) =
−1

θ2









( ḟ0/ f0)(F
−1
0 (t))

1+ F−1
0 (t)( ḟ0/ f0)(F

−1
0 (t))









(114)

This in turn implies that the information matrix also has a separable structure: that is,

I(θ) =

∫

[0,1]
ġ(t) ġ>(t)dt =

1

θ2
2









ι11 ι12

ι12 ι22









=
1

θ2
2

I0 (115)

where each ιi j can be derived from equation (114) and I0 is a fixed matrix depending only on the

13One might also consider a model in which a transformation of x is nested in a location-scale or scale-shape model, such
as the lognormal model. As long as the transformation does not depend on parameters of the model in which it is nested, this
invariance continues to hold.
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model.

The situation is similar for the scale-shape class. For members of this class we have

g(t) =









−θ2

θ1
F−1

0 (t) f0(F
−1
0 (t))

1
θ2

log(F−1
0 (t))F

−1
0 (t) f0(F

−1
0 (t))









(116)

and

ġ(t) =









−θ2

θ1

�

1+ F−1
0 (t)( ḟ0/ f0)(F

−1
0 (t))

�

1
θ2

�

1+ log(F−1
0 (t)) + log(F−1

0 (t))F
−1
0 (t)( ḟ0/ f0)(F

−1
0 (t))

�









(117)

so that

I(θ) =









θ2
2

θ2
1
σ11

−1
θ1
σ12

−1
θ1
σ12

1
θ2

2
σ22









(118)

Consider the third term in (17):

g>(s)

 

∫ 1

0

ġ(r) ġ>(r)dr

!−1

g(t). (119)

Given the above expressions for g and ġ, it is straightforward to show that the terms that depend on

parameters cancel for members of either the location-scale or scale-shape class. Therefore the distri-

bution of the parametric empirical process does not depend on specific parameter values for members

of these model classes. Note also that because ġ is the score function of the model, the conditions

given for finite Fisher information, equations (111) and (112), are equivalent to the assumptions that

ġ exists a.e. and
∫

ġ ġ> <∞, assumptions that are needed for a well-behaved compensator. Invariance

of the compensator to parameter values for either of these classes is analogous — the compensator

is constructed using only the augmented score function h, and as such, the parameter values in the

integrand of the compensator,

h(s,θ)>
 

∫ 1

s

h(s,θ)h>(s,θ)ds

!−1 ∫ 1

s

h(r,θ)dFn(r) (120)
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can be factored out in the same way using the above calculations and partitioned matrices.

C Proof of results in the text

Proof of Theorem 1: Durbin’s approximation Pg in (26) requires that d2

d2 t
σ2(t) be finite for all t. This is

implied by the condition that ∂ 2

∂ x∂ θ
f (x ,θ) is finite: the derivatives of the covariance function for the

parametric empirical process are (letting s ≤ t and suppressing dependence on θ as an argument in the

functions g and I)

ρ10(s, t) = 1− t − ġ>(s)I−1
θ g(t), ρ01(s, t) =−s− g>(s)I−1

θ ġ(t) (121)

and the second derivatives are

ρ20(s, t) =− g̈>(s)I−1
θ g(t), ρ11(s, t) =− ġ>(s)I−1

θ ġ(t) ρ02(s, t) =−g>(s)I−1
θ g̈(t). (122)

When evaluated at s = t, we find that ρ20(t, t) = ρ02(t, t), and their existence is implied by the

existence of g̈, which in turn is implied by the above assumption on the density of the model, because

the second derivative of g involves derivative terms up to ∂ 3F(x ,θ)
∂ x2∂ θ

�

�

x=F−1(t,θ).

By the definition of t0,

d

dt
σ2(t)

�

�

t=t0
= ρ10(t0, t0) +ρ01(t0, t0) = 0. (123)

We also have, from (121),

ρ10(t, t)−ρ01(t, t) = 1 (124)

for all t. Putting these two equations together we find that at t0,

ρ10(t0, t0) =−ρ01(t0, t0) = 1/2. (125)

Inserting (125) and (122) into (26), we have the result.

Proof of Theorem 2: Because θ is estimated by maximum likelihood, the covariance function of v̂ is (17),
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which implies that

σ2(t) = t − t2− g>(t)I−1 g(t) (126)

and a Taylor expansion around t0 shows that the standard deviation of v̂ locally about t0 is

σ(t) = σ(t0) +
1

2(2k)!σ(t0)
d(2k)

dt(2k)
σ2(t0)|t − t0|(2k)(1+ o(1)), t → t0 (127)

because all derivatives of order lower than 2k are zero by assumption. By Lemma 2, the correlation

function of v̂ locally about t0 has a first-order expansion for all parametric models:

r(s, t) = 1−
1

2σ2(t0)
|t − s|(1+ o(1)), s, t → t0. (128)

These results, combined with Theorem 8.2 of Piterbarg (1996) imply the result. Specifically, be-

cause the correlation function admits a first-order expansion, while for the standard deviation the order

of the expansion is 2k > 1, case (i) of the theorem applies. Specialized to this context, we have

P

¨

sup
t∈[0,1]

v̂(t)> a

«

= H(σ, k)
�

a

σ(t0)

�2−1/k

Ψ
�

a

σ(t0)

�

(1+ o(1)), a→∞ (129)

where

H(σ, k) =

∫

R
e−
�

A
C t
�2k

dt (130)

and A and C as described in the statement of the theorem (which come from the leading terms in the

expansions of the variance and covariance functions above). Using the substitution x = t2k, one finds

H(σ, k) =

∫

R
e−
�

A
C t
�2k

dt = 2

∫

[0,∞)
e−
�

A
C t
�2k

dt =
C

kA
Γ
�

1

2k

�

(131)

Finally use the relation

aΨ(a) = φ(a)(1+ o(1)) (132)

in (129) to establish the result.

Lemma 2. Let v̂ have covariance function ρ as in (16) or (17) and correlation function r(s, t) =
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ρ(s, t)/
p

σ2(s)σ2(t). Then

r(s, t) = 1−
1

2σ2(t0)
|t − s|(1+ o(1)), s, t → t0 (133)

Proof of Lemma 2: Expanding the squared covariance function ρ2(s, t) in s around t results in

ρ2(s, t) = ρ2(t, t) + 2ρ(t, t)ρ10(t, t)(s− t)(1+ o(1)), s→ t, (134)

while an expansion of ρ(s, s) in s around t implies

ρ(s, s) = ρ(t, t) + [ρ10(t, t) +ρ01(t, t)](s− t)(1+ o(1)), s→ t. (135)

This implies that

ρ2(s, t)−ρ(s, s)ρ(t, t) = ρ2(t, t) + 2ρ(t, t)ρ1(t, t)(s− t)

−ρ2(t, t)−ρ(t, t)[ρ10(t, t)−ρ01(t, t)](s− t) + o(s− t), s→ t

= ρ(t, t)[ρ10(t, t)−ρ01(t, t)](s− t) + o(s− t)

= ρ(t, t)(s− t)(1+ o(1)), s→ t, (136)

this last equality occurring because ρ10(t, t) − ρ01(t, t) = 1 for all t. Continuity of σ2(t) = ρ(t, t)

implies that ρ(t, t) = ρ(t0, t0) + o(1) so we can rewrite the above as

=−σ2(t0)|t − s|(1+ o(1)), s, t → t0. (137)

Then, using the definition of correlation and the expansion
p

1− x = 1− 1
2

x(1+ o(1)), x → 0 we have

that

r(s, t) =

È

1−
σ2(t0)

σ2(s)σ2(t)
|t − s|(1+ o(1))

= 1−
1

2σ2(t0)
|t − s|(1+ o(1)), s, t → t0. (138)
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Proof of Theorem 3: The result follows from the combination of Peskir (2002, Theorem 2.2) and the

transition distributions of Gauss-Markov processes, given above in (38). Namely, because y is Marko-

vian,

P
�

yt ∈ B
	

=

∫ t

0

P
�

yt ∈ B|ys = a
	

dF(s) (139)

for all measurable B ⊆ [a,∞). Given the distributions (38),

P
�

yt ∈ [a,∞)
	

=Ψ





a
p

ρ(t, t)



 (140)

because P
�

y0 = 0
	

= 1 and

P
�

yt ∈ [a,∞)|ys = a
	

=Ψ





a−m(s, t)
p

V (s, t)



 (141)

where m and V are defined above. The distribution of τa has a density because of the relationship

between Brownian motion and y , that is, equation (40).

Proof of Lemma 1: This proof is adapted and extended slightly from Khmaladze and Koul (2009, proof

of Lemma 2.1, p. 3169). For notational simplicity, let g(t,θ) = gt = [gt1, gt2, . . . gt p]>, and define

Gt = gt g>t . The image and kernel of Gt are

I(Gt) =
�

c ∈ Rp : c = Gt a, a ∈ Rp	 (142)

=
�

c : c = bgt , b ∈ R
	

(143)

and

K(Gt) =
�

a ∈ Rp : Gt a = 0
	

(144)

=
¦

a : g>t a = 0
©

. (145)

Notably, gt ∈ I(Gt). For any c = bgt ∈ I(Gt),

Gt c = bgt g>t gt = bgt

p
∑

i=1

g2
t i = c



g




2
(146)
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which implies that G−1
t is any matrix such that for c ∈ I(Gt),

G−1
t c =

c


g




2 + a, a ∈ K(Gt) (147)

Now, for any d ∈ I(Gt),

g>t G−1
t d =

g>t d


g




2 (148)

because g>t a = 0 for any a ∈ K(Gt). Therefore the above quantity g>t G−1
t d is defined uniquely for any

d ∈ I(Gt). In particular,

g>t G−1 gt =
g>t gt


g




2 = 1. (149)

This means

g>t β̂(t, X , θ̂) =
1

n

n
∑

i=1

λ(t, X i , θ̂) = λ(t, θ̂) (150)

and implies the result (68).
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